UVA Mathematics Department
Advisory Calculus Placement Exam

Exam C:


1. Evaluate  \( \displaystyle{\int \frac{1}{\sqrt{x^2+2}} \, \mathrm{d}x}\).

2.  Evaluate \(\displaystyle \int \frac{16}{x^3-4x} \, \mathrm{d}x\).

3. The region under the graph of \(y = \sin x\), \(0 \le x \le \pi\), is rotated 360 degrees about the \(y\)-axis forming a solid of revolution \(S\).  Find the volume of \(S\).

4. Solve the differential equation \(\frac{dy}{dx} = y^2x^2 + y^2\), obtaining an explicit solution.

5.  Show that the series \(\displaystyle \sum_{n=2}^\infty \frac{1}{n(\ln n)^2} \) converges. 

6.  Find the Maclaurin Series for \(\displaystyle f(x) = \frac{x}{3+x^2} \).  What is the radius of convergence?

7.  Determine the radius and interval of convergence of the power series \(\displaystyle \sum_{n=1}^{\infty} \frac{1}{n 2^n}  (x - 1)^{n}\).

8.   Suppose that \((x,y)\) has distance \(r\ge 1\) from the origin.  Use polar coordinates to show that

        \( (|x| + |y|)\ln(x^2 + y^2) \le 4r\ln(r).\)

9.  Find an equation of the line tangent to the curve \(x = 1 + \ln t, y = t^2 + 2\) at the point \((1, 3)\).

10.  Find the length of the curve \(x = e^t -t, y = 4e^{t/2}\), \(0 \le t \le 2\).