Instructions: This is a four hour exam. Your solutions should be legible and clearly organized, written in complete sentences in good mathematical style. All work should be your own – no outside sources are permitted – using methods and results from the first year topology course topics.

1. Let M be a smooth n-manifold and $f: M \to M$ a smooth map. Let

$$\Gamma_f = \{(x, f(x)) \mid x \in M\} \text{ and } \Delta = \{(x, x) \mid x \in M\}$$

be the graph of f and the diagonal submanifold, respectively, in $M \times M$.

Prove that if $x_0 \in M$ is a point with $f(x_0) = x_0$, then the following are equivalent:

- (i) The manifolds Γ_f and Δ intersect transversely at (x_0, x_0) .
- (ii) The linear map $df_{x_0}: T_{x_0}M \to T_{x_0}M$ does not have 1 as an eigenvalue.

2. Let S be an oriented surface of genus 2 without boundary.

(a) By describing S as a polygon with certain pairs of edges identified and using the Seifert–Van Kampen theorem, or by another method, give a presentation for the group $\pi_1(S)$.

(b) Show that if a finite G group acts freely on S, then G must have order either 1 or 2.

3. Let X be a smooth, compact n-manifold with boundary ∂X . Prove that there does not exist a retraction $X \to \partial X$, that is, show there exists no smooth map $f: X \to \partial X$ with f(x) = x for all $x \in \partial X$.

4. (a) Let M and N be smooth connected closed (= compact without boundary) manifolds of the same dimension. Show that a submersion $f: M \to N$ will then be a finite sheeted covering map.

(b) Explain why if M is a connected closed surface, and $f: M \to S^2$ is a submersion, then f must, in fact, be a diffeomorphism.

5. Let C_* and D_* be chain complexes of abelian groups.

(a) Complete the definition: Two chain maps $f_*, g_* : C_* \to D_*$ are *chain homotopic* if

(b) Show that if f_* is chain homotopic to g_* , and g_* is chain homotopic to h_* , then f_* is chain homotopic to h_* .

(c) Prove that if $f_*, g_* : C_* \to D_*$ are chain homotopic chain maps, then $H(f_*) = H(g_*) : H_*(C_*) \to H_*(D_*).$ 6. Suppose X is a CW complex with n-skeleton X_n for $n \ge 0$.

(a) Define the associated cellular chain complex: the groups $C_n^{CW}(X)$ and the differentials $d_n^{CW}: C_{n+1}^{CW}(X) \to C_n^{CW}(X)$. Then prove that $d_{n-1}^{CW} \circ d_n^{CW} = 0$.

(b) Explain why $C_n^{CW}(X)$ is isomorphic to a free abelian group with one generator for each n-cell of X.

7. Prove that the subset of \mathbb{R}^3 determined by the following equations is a manifold:

$$2x^{2} + 3y + z = 6$$

-x² + 2y³ + z² = 2

Also describe the tangent space to this manifold at the point (1, 1, 1).

8. Let $S^3 \xleftarrow{p_1} S^3 \lor S^3 \xrightarrow{p_2} S^3$ be the two 'projection maps': the other sphere is collapsed to the basepoint. Then say that a map $f: S^3 \to S^3 \lor S^3$ has type (m, n) if the degree of $p_1 \circ f$ is m and the degree of $p_2 \circ f$ is n. Let $X_f = (S^3 \lor S^3) \cup_f D^4$. Compute the homology groups of X_f if f has type (8,6), describing the homology groups as

direct sums of cyclic groups, as usual.