COMPLEX ANALYSIS GENERAL EXAM FALL 2022

Solve as many problems as you can. Full solutions on a smaller number of problems will be worth more than partial solutions on several problems. Throughout $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Don't use any of the Picard theorems.

Problem 1.

Compute, for $\xi > 0, b > 0$ and $a \in \mathbb{R}$

$$\int_{-\infty}^{\infty} \frac{e^{ix\xi}}{(x-a)^2 + b} \, dx$$

Show all estimates.

Problem 2.

Let f be an entire function with

$$\lim_{R \to \infty} \left(\sup_{|z| > R} \frac{|f(z)|}{|z|} \right) = 0.$$

Show that f is constant.

Problem 3.

Let R > 0, and $B_R(0) = \{z \in \mathbb{C} : |z| < R\}$. Suppose that $f : \mathbb{C} \setminus \overline{B_R(0)} \to \mathbb{C}$ is analytic and that $\lim_{z\to\infty} f(z) = 0$. Show that $\lim_{z\to\infty} zf(z)$ exists.

Hint: it maybe to helpful to consider the "singularity of f at ∞ " namely, the signularity of g(z) = f(1/z) at z = 0.

Problem 4.

Suppose that f_n is a sequence of entire functions and that f_n converges uniformly on compact subsets of \mathbb{C} to a polynomial p of degree d. Show that there is an $N \in \mathbb{N}$ so that for all $n \geq N$, the function f_n has at least d zeroes (counted with multiplicity).

Problem 5.

Let U be open and connected. Recall that a collection \mathcal{F} of analytic functions $U \to \mathbb{C}$ is normal if given any sequence $(f_n)_n$ in \mathcal{F} , there is a subsequence f_{n_k} which converges uniformly on compact sets. Let $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$. Fix $p \in U$ and let \mathcal{F} be the collection of analytic functions $f: U \to \mathbb{H}$ so that f(p) = i. Show that \mathcal{F} is normal.

Date: January 12, 2022.