Algebra general exam. January 8, 2020, 9am -1pm

Your UVa ID Number:

Directions.

- Please show all your work and justify any statements that you make.
- State clearly and fully any theorem you use.
- Vague statements and hand-waving arguments will not be appreciated.
- You may assume the statement in an earlier part proven in order to do a later part.

DO EACH PROBLEM ON A SEPARATE SHEET OF PAPER, AND STAPLE THEM TOGETHER IN THE CORRECT ORDER BEFORE TURNING THE EXAM IN.

Sign below the pledge:

"On my honor, I pledge that I have neither given nor received help on this assignment."

1.

- (a) (7 pts) Let C be a cyclic group of order $n \geq 2$. Explain briefly why $\operatorname{Aut}(C) \cong \mathbb{Z}_n^{\times}$ (the multiplicative group of \mathbb{Z}_n) and why $\operatorname{Aut}(C) \cong \mathbb{Z}_{n-1}$ if n is prime.
- (b) (7 pts) Let G be a finite group, let p be the smallest prime dividing |G|, and suppose that G contains a normal subgroup C of order p. Prove that C lies in the center of G.
- **2.** (10 pts) Let A be the subgroup of \mathbb{Z}^2 generated by (2, 6) and (4, 8). Prove that $A \cong \mathbb{Z}^2$ and find (with proof) elements $v_1, v_2 \in \mathbb{Z}^2$ and $n_1, n_2 \in \mathbb{N}$ such that $\mathbb{Z}^2 = \mathbb{Z}v_1 \oplus \mathbb{Z}v_2$ and $A = \mathbb{Z}(n_1v_1) \oplus \mathbb{Z}(n_2v_2)$.
- **3.** (10 pts) Let $R = \mathbb{Z}[i]$, the ring of Gaussian integers. Find (with complete proof!) the number of ideals of R which contain 30.
- **4.** Let R be a commutative ring with 1 and let $x \in R$.
 - (a) (3 pts) Prove that $x \notin R^{\times}$ if and only if $x \in M$ for some maximal ideal M of R.
 - (b) (9 pts) Prove that the following are equivalent:
 - (i) $x \in M$ for every maximal ideal M of R
 - (ii) $1 + xy \in R^{\times}$ for every $y \in R$

1

- **5.** (12 pts) Let F be a field and let $A, B \in Mat_n(F)$ for some $n \in \mathbb{N}$. Suppose that $A^2 = B^2 = I$ and $\operatorname{rk}(A I) = \operatorname{rk}(B I)$. Prove that A and B are similar. **Hint:** Consider separately the cases char $F \neq 2$ and char F = 2.
- **6.** In each part of this problem determine if the given objects are isomorphic:
 - (a) (4 pts) \mathbb{R} and \mathbb{C} as \mathbb{Q} -vector spaces
 - (b) (3 pts) \mathbb{C} and $\mathbb{R} \times \mathbb{R}$ as rings
 - (c) (4 pts) $\mathbb{R}[x]/(x^2-1)$ and $\mathbb{R} \times \mathbb{R}$ as rings
 - (d) (4 pts) $\mathbb{R}[x]/(x-1)$ and $\mathbb{R}[x]/(x+1)$ as $\mathbb{R}[x]$ -modules
- **7.** Let F, K_1, K_2 and L be fields with $F \subseteq K_1 \subseteq L$ and $F \subseteq K_2 \subseteq L$. Recall that the tensor product $K_1 \otimes_F K_2$ has a natural structure of a ring where multiplication of simple tensors is given by $(a \otimes b) \cdot (c \otimes d) = ac \otimes bd$ for all $a, c \in K_1$ and $b, d \in K_2$.
 - (a) (5 pts) Prove that there exists a unique **ring homomorphism** π : $K_1 \otimes_F K_2 \to L$ such that $\pi(a \otimes b) = ab$ for all $a \in K_1$, $b \in K_2$.
 - (b) (2 pts) Assume that $K_1 \otimes_F K_2$ is a field. Prove that π is injective.
 - (c) (5 pts) Assume that $K_1 \cap K_2 \neq F$. Prove that π is not injective.
- **8.** Let K/F be a field extension. Suppose that K = F(a,b) for some $a,b \in K$ such that $a^2 \in F$ and $b^2 \in F$.
 - (a) (3 pts) Prove that $[K:F] \leq 4$
 - (b) (4 pts) Give a specific example (with full proof) where [K:F]=4
 - (c) (4 pts) Assume that char $(F) \neq 2$. Prove that the extension K/F is Galois
 - (d) (4 pts) Now assume that F is finite. Prove that $[K:F] \leq 2$.