NAME: ________________________________

PLEDGE: ________________________________

SIGNATURE: ________________________________

To get credit for a problem, you must show all of your reasoning and calculations.

<table>
<thead>
<tr>
<th>Pr</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
1. Suppose $f : [0, 1] \to \mathbb{C}$ is continuous. Find

$$\lim_{k \to \infty} \int_{0}^{1} k x^{k-1} f(x) dx.$$

Prove your result.
2. (a) Show that any open subset of \mathbb{R} is a countable disjoint union of open intervals (a, b) (where $-\infty \leq a < b \leq \infty$).

(b) Show that the σ-algebra generated by the open subsets of \mathbb{R} is the same as the σ-algebra generated by the intervals $[a, b)$ with $-\infty < a < b < \infty$.
3. Suppose (X, Σ) is a measurable space, and ν and μ are two measures on the σ-algebra Σ with ν absolutely continuous with respect to μ. Suppose ν is a finite measure. Show that $\nu(E) \to 0$ as $\mu(E) \to 0$. (In other words, given $\epsilon > 0$ there exists $\delta > 0$ such that if $E \in \Sigma$ with $\mu(E) < \delta$, then $\nu(E) < \epsilon$.)

[Hint: If not show $\exists \, \epsilon > 0$ and $E_j \in \Sigma$ such that $\bigcup_{j=1}^{\infty} E_j < \infty$ and $\nu(E_j) \geq \epsilon$. Proceed from there.]
4. (a) Use the Monotone Convergence Theorem and \(\int_1^t \frac{dx}{x} = \log t \) to show

\[
\lim_{n \to \infty} n \log \left(1 + \frac{1}{n} \right) = t \quad \text{for} \quad t \geq 0.
\]

(b) Show \(\lim_{n \to \infty} \int_0^n \left(1 + \frac{t}{n} \right)^n e^{-2t} dt = 1 \).
(c) Let $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ for $x > 0$. Show that

\[\begin{aligned}
\Gamma(x) &= \lim_{n \to \infty} \int_0^n \left(1 - \frac{t}{n} \right)^n t^{x-1} dt \\
&= \lim_{n \to \infty} n^x n!(x(x + 1) \cdots (x + n))^{-1}.
\end{aligned} \]
5. (a) State the Mean Value Property for analytic functions, then use the Cauchy Integral Formula to prove it.

(b) TRUE or FALSE: If u is a harmonic function on a domain in \mathbb{R}^2, then u has a harmonic conjugate.
(c) Find a fractional linear transformation (also called a Möbius transformation) f that takes the first quadrant to the top half of the unit disk and satisfies $f(2) = i$. (You must explain some comprehensible procedure and not simply produce an f out of thin air.) Under your map, what is the image of the vertical ray $\{\Re z = c > 0, \Im z > 0\}$?
6. Let $f(z)$ be a bounded analytic function in the upper half-plane that extends continuously to the real axis. If $|f(z)| \leq M$ for real z, show that $|f(z)| \leq M$ for all z in the upper half-plane.

[Suggestion: for the top half of an arbitrary disk centered at the origin, consider an appropriate branch of the function $(z + i)^{-\varepsilon}f(z)$ for small enough $\varepsilon > 0$.]
7. Use the argument principle to determine the number of roots of \(p(z) = z^9 + 4z^5 - 3z^4 + 4z + \alpha \) in the right half-plane. The answer may depend on the value of \(\alpha \), which is assumed real.
8. Let \(a\) and \(b\) be unequal positive numbers. By integrating an appropriate branch of \(\frac{(\log z)^2}{(z+a)(z+b)}\) around a keyhole contour, find

\[
\int_0^\infty \frac{\log x}{(x+a)(x+b)} \, dx.
\]