1. (10 pts) Find all maximal ideals of \(\mathbb{Z}[i] \) which contain 182. Find minimal generators for these ideals.

2. (10 pts) Let \(r_1, r_2, r_3 \) be the roots of the cubic polynomial \(X^3 + 10X^2 - 5X + 4 \). Find the cubic polynomial with rational coefficients whose roots are \(r_1^2, r_2^2, r_3^2 \).

3. (20 pts)
 a) Let \(G \) be a group of order \(2n \), where \(n \) is odd and \(n > 1 \). Prove that \(G \) cannot be simple. (Hint: consider elements of order 2 in the regular representation of \(G \) in \(S_{2n} \).)
 b) Let \(G = \mathbb{Z}_n^* \) denote the group of units in \(\mathbb{Z}_n \). Find all integers \(n \) such that \(x^2 = 1 \) for all \(x \in G \).

4 (15 pts). Find the characteristic polynomial, the minimal polynomial, and the Jordan canonical form of the matrix (over the complex numbers)

\[
A = \begin{pmatrix}
1 & 2 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 0 & 2 & 0 \\
-1 & 0 & 0 & 1
\end{pmatrix}.
\]

5 (10 pts). Let \(R \) be a commutative ring with identity, and let \(I \) be a nilpotent ideal, i.e., \(I^k = 0 \) for some \(k \). Let \(M, N \) be two \(R \)-modules, and let \(f : M \to N \) be an \(R \)-homomorphism. Suppose that the induced homomorphism from \(M/IM \) to \(N/IN \) is surjective. Prove that \(f \) is surjective.
6. (10 pts) Let F be a field and A an n by n matrix with coefficients in F. Assume that A has only one invariant factor. Prove that for every n by n matrix B with coefficients in F such that $AB = BA$ there is a polynomial $p(t) \in F[t]$ such that $p(A) = B$. (Hint: consider the structure of $V = F^n$ as a $k[A]$-module. Use that an endomorphism is determined by its action on a basis.)

7 (10 pts). Let V be a finite dimensional vector space over a field F and let V^* be its dual. For $v \in V$ and $f \in V^*$, denote by $\phi_{v,f}$ the endomorphism of V defined by $\phi_{v,f}(w) = f(w)v$ for $w \in V$. Prove that there exists a well-defined F-linear map $\Phi : V \otimes_F V^* \rightarrow \text{End}_F(V)$ satisfying $\Phi(v \otimes f) = \phi_{v,f}$ for all $v \in V$ and $f \in V^*$. Prove that Φ is an isomorphism.

8 (15 pts). Consider the polynomial $x^6 - 3$ over the rational numbers. What is the degree of its splitting field, and what is the splitting field? Describe the Galois group of the splitting field as a subgroup of the symmetric group S_6. Is it abelian?