Algebra general exam. January 9, 2013, 9am -1pm

Directions.

• Please show all your work and justify any statements that you make.
• State clearly and fully any theorem you use.
• Vague statements and hand-waving arguments will not be appreciated.
• You may assume the statement in an earlier part proven in order to do a later part.

DO EACH PROBLEM ON A SEPARATE SHEET OF PAPER, AND STAPLE THEM TOGETHER IN THE CORRECT ORDER BEFORE TURNING THE EXAM IN.

1. Let \(p \) be a prime and let \(S_{2p} \) denote the symmetric group on \(2p \) elements.
 (a) (2 pts) Find the order of a \(p \)-Sylow subgroup of \(S_{2p} \).
 (b) (5 pts) Describe explicitly a \(p \)-Sylow subgroup of \(S_{2p} \) (providing a generating set counts as explicit description, but make sure to prove that your subgroup is indeed \(p \)-Sylow).
 (c) (2 pts) Consider the set of elements of order \(p \) in \(S_{2p} \) – clearly, it is a union of conjugacy classes. How many conjugacy classes does it consist of?
 (d) (5 pts) Now consider the set of elements of order \(p \) in the alternating group \(A_{2p} \). How many conjugacy classes (of \(A_{2p} \)) does it consist of? Make sure to justify your answer.
 \textbf{Hint:} Distinguish between the cases \(p = 2 \) and \(p > 2 \).

2. In both parts of this problem \(R \) is a commutative domain with 1 and \(K \) is the field of fractions of \(R \).
 (a) (5 pts) Let \(R = \mathbb{Z}[t] \), the ring of polynomials over \(\mathbb{Z} \) in one variable. Let \(p(x) = x^n + r_{n-1}x^{n-1} + \ldots + r_0 \in R[x] \) be a monic polynomial with coefficients in \(R \), and suppose that \(p(\alpha) = 0 \) for some \(\alpha \in K \). Prove that \(\alpha \in R \).
 (b) (4 pts) Now let \(R = \mathbb{Z}[\sqrt{-3}] \). Find a monic polynomial \(p(x) \in R[x] \) which has a root in \(K \), but has no root in \(R \) (and prove that \(p(x) \) has required properties). \textbf{Hint:} There actually exists a quadratic polynomial with integer coefficients with required property.

3. (6 pts) Let \(F \) be a field, \(d \) a positive integer, and \(f_1, f_2, \ldots \in F[x_1, \ldots, x_d] \) an infinite sequence of polynomials in \(F[x_1, \ldots, x_d] \). Given a positive integer \(n \), let \(S_n \) be the set of all \(d \)-tuples \((a_1, \ldots, a_d) \in F^d \) satisfying the following system of equations:
 \[f_i(a_1, \ldots, a_d) = 0 \text{ for each } 1 \leq i \leq n - 1 \text{ and } f_n(a_1, \ldots, a_d) = 1. \]
 Prove that there exists an integer \(N \) such that the set \(S_n \) is empty for all \(n \geq N \). \textbf{Hint:} Noetherian rings.
4. Let \(p \) be a prime, \(\mathbb{F}_p \) a finite field of order \(p \), and let \(F \) be a fixed algebraic closure of \(\mathbb{F}_p \). For \(n \in \mathbb{N} \), denote by \(\mathbb{F}_{p^n} \) the unique subfield of order \(p^n \) inside \(F \).

(a) (3 pts) Prove that \(\mathbb{F}_{p^n} \cup \mathbb{F}_{p^m} \) is a subfield if and only if \(m \) divides \(n \) or \(n \) divides \(m \).

(b) (4 pts) For a subset \(S \) of \(\mathbb{N} \), let

\[
F(S) = \bigcup_{n \in S} \mathbb{F}_{p^n}.
\]

Give an example (with proof) of an infinite set \(S \) for which \(F(S) \) is a subfield and \(F(S) \neq F \).

5. Let \(\omega = e^{2\pi i/3} \) and consider the field \(K = \mathbb{Q}(\sqrt[3]{2}, \omega) \).

(a) (2 pts) Prove that \([K : \mathbb{Q}] = 6\).

(b) (2 pts) Prove that \(K/\mathbb{Q} \) is a Galois extension.

(c) (3 pts) Let \(M/L \) be any finite Galois extension. Prove that an element \(\gamma \in M \) is primitive for \(M/L \) (that is, \(L(\gamma) = M \)) if and only if \(\sigma(\gamma) \neq \gamma \) for any \(\sigma \in \text{Gal}(M/L) \setminus \{1\} \).

(d) (4 pts) Now prove that \(\gamma = \sqrt[3]{2} + \omega \) is a primitive element for \(K/\mathbb{Q} \).

(e) (3 pts) Let \(x^5 + a_5 x^5 + \ldots + a_0 \) be the minimal polynomial of \(\gamma \) over \(\mathbb{Q} \). Prove that \(a_5 = 3 \) without actually computing the minimal polynomial.

6. Let \(F \) be an algebraically closed field and \(A \in \text{Mat}_n(F) \) an \(n \times n \) matrix over \(F \) for some \(n \geq 2 \).

(a) (6 pts) Prove that there exist a diagonalizable matrix \(D \) and a nilpotent matrix \(N \) (that is, \(N^k = 0 \) for some \(k \in \mathbb{N} \)) such that \(A = D + N \) and \(D \) and \(N \) commute, that is, \(DN = ND \).

(b) (4 pts) Assume that \(A \) itself is diagonalizable. Prove that if \(D \) and \(N \) satisfy the conditions of part (a), then \(N = 0 \) (and hence \(D = A \)).

Hint: You may use the following fact without proof: if two diagonalizable matrices \(X \) and \(Y \) commute, then they are simultaneously diagonalizable, that is, there exists an invertible matrix \(Q \) such that \(Q^{-1}XQ \) and \(Q^{-1}YQ \) are both diagonal.