Algebra general exam. January 13th 2012, 9am-2pm

Directions.

• Please show all your work and justify any statements that you make.
• State clearly and fully any theorem you use.
• Vague statements and hand-waving arguments will not be appreciated.
• You may assume the statement in an earlier part proven in order to do a later part.

DO EACH PROBLEM ON A SEPARATE SHEET OF PAPER, AND STAPLE THEM TOGETHER IN THE CORRECT ORDER BEFORE TURNING THE EXAM IN.

1. Let $F = \mathbb{F}_q$ be a finite field, where $q = p^r$ is a power of a prime p. Let $G = GL_n(F)$ be the group of all $n \times n$ invertible matrices with entries in F. Once you pick an ordered basis of $V := F^n$, you may find it useful to identify G with the group of invertible linear operators on V.

(a) (6 pts) Calculate the order of G. Explain your answer carefully and write it in the simplest form as you can.

(b) (3 pts) Determine the order of a Sylow p-subgroup of G, and explicitly exhibit a Sylow p-subgroup U of G.

(c) (2 pts) What is the normalizer in G of the Sylow p-subgroup U that you exhibited in (b)? An answer is sufficient.

(d) (3 pts) How many Sylow p-subgroups of G are there? Explain how your answer in (d) is consistent with Sylow’s theorem.

2. Let G be a subgroup of the symmetric group S_n for some integer $n > 1$. Assume that G acts transitively on $n := \{1, 2, \cdots, n\}$, that is, for any $i, j \in n$ there exists $g \in G$ s.t. $g(i) = j$.

A partition of n is a decomposition $n = X_1 \cup \cdots \cup X_m$ into a disjoint union of nonempty subsets. There are two trivial partitions: $n = n$ and $n = X_1 \cup \cdots \cup X_m$ (so each X_i has just one element). Otherwise the partition is said to be nontrivial. The group G is called imprimitive if there is a nontrivial partition $n = X_1 \cup \cdots \cup X_m$ such that, for $g \in G$ and $1 \leq i \leq m$, $g(X_i) = X_j$ for some j. (That is, G permutes the partition members among themselves.) The set $\{X_i\}$ is called a system of imprimitivity for the action of G on n. The group G is called primitive if it is not imprimitive.

(a) (3 pts) Let $n = 6$ and consider the cyclic subgroup $G := \langle 1, 2, 3, 4, 5, 6 \rangle$ of S_6. There are two non-trivial systems of imprimitivity for the action of G on n. Find them.

(b) (3 pts) Prove that if $X_1 \cup \cdots \cup X_m$ is a system of imprimitivity for the action of G on n, then all subsets X_i have the same size n/m.

(c) (4 pts) G is said to be doubly transitive if given elements $a, b, c, d \in n$, with $a \neq b$ and $c \neq d$, there exists $g \in G$ such that $g(a) = c$ and $g(b) = d$. Show that a doubly transitive group G is primitive.
2

(d) (4 pts) Show that if \(n \geq 3 \), the alternating subgroup \(G = A_n \) of \(S_n \) is primitive.

3. Let \(R = \mathbb{Z} \sqrt{-2} \).

(a) (7 pts) Prove that \(R \) is a Euclidean domain. **Hint:** Use the square of the usual complex norm.

(b) (8 pts) Write 7 and 11 as products of irreducible elements of \(R \). Justify your answer.

4. Let \(R \) be a ring with 1. The **opposite ring** \(R^{op} \) is defined as follows: as a set \(R^{op} = R \), the addition on \(R^{op} \) coincides with the addition on \(R \) and the multiplication \(* \) on \(R^{op} \) is the multiplication on \(R \) in reverse order, that is, \(a * b = ba \) (where \(ba \) is the product in \(R \)). Let \(e \in R \) be an idempotent element, that is, \(e^2 = e \).

(a) (2 pts) Prove that \(eRe = \{ ere : r \in R \} \) is a subring of \(R \).

(b) (6 pts) Consider the left \(R \)-module \(M = Re \). Prove that its endomorphism ring \(\text{End}_R(M) = \text{Hom}_R(M, M) \) is isomorphic to \((eRe)^{op} \), the opposite ring of \(eRe \).

5. (9 pts) Let \(F \) be a field, \(n \) a positive integer and \(M_n(F) \) the set of \(n \times n \) matrices over \(F \). Let \(A \in \text{Mat}_n(F) \) be such that \(A^2 = A \). Prove that \(A \) is diagonalizable and classify all such \(A \) up to similarity. (Recall that \(A, B \in \text{Mat}_n(F) \) are similar if there exists \(C \in \text{GL}_n(F) \) s.t. \(C^{-1}AC = B \).)

6. Let \(R \) be a commutative ring with 1. Recall that a left \(R \)-module \(M \) is called **Noetherian** if it satisfies the ascending chain condition on submodules and **Artinian** if it satisfies the descending chain condition on submodules. Assume that an \(R \)-module \(M \) is both Artinian and Noetherian. (For example, \(R \) might be a field, and \(M \) might be a finite-dimensional vector space over \(R \)). Let \(T : M \to M \) be an \(R \)-module homomorphism.

(a) (3 pts) Prove that there exists \(k \in \mathbb{N} \) s.t. \(\ker(T^k) = \ker(T^{2k}) \) and \(\text{im}(T^k) = \text{im}(T^{2k}) \).

(b) (4 pts) Prove that if \(k \) is as in part (a), then \(M = \ker(T^k) \oplus \text{im}(T^k) \).

(c) (2 pts) Deduce from (a) and (b) that there exist submodules \(M_0 \) and \(M_1 \) of \(M \) s.t. \(M = M_0 \oplus M_1, T|_{M_0} \) is nilpotent and \(T|_{M_1} \) is invertible (as a map from \(M_1 \) to \(M_1 \)).

(d) (5 pts) Now assume that \(R \) is a field of **characteristic zero**, \(M \) is a finite-dimensional vector space over \(R \) and \(\text{tr}(T^n) = 0 \) for every \(n \in \mathbb{Z}_{\geq 0} \). Prove that \(T \) is nilpotent. **Hint:** Apply (c), assume that \(M_1 \neq 0 \) and reach a contradiction by applying the Cayley-Hamilton theorem to \(T|_{M_1} \).

7. If \(q \) is a prime power, denote by \(\mathbb{F}_q \) a finite field of order \(q \).

(a) (6 pts) Find a monic irreducible polynomial of degree 3 over \(\mathbb{F}_5 \) and use it to construct a field of order 125. Justify your answer.

(b) (6 pts) Find all \(q \) for which the polynomial \(p(x) = x^2 + x + 1 \) is irreducible in \(\mathbb{F}_q[x] \). **Hint:** What can you say about roots of \(p(x) \) and what do you know about the multiplicative group \(\mathbb{F}_q^\times \)?
8. Let F be a field of characteristic zero, let K and L be finite extensions of F and KL the compositum of K and L.

(c) (4 pts) Give an example where $K \cap L = F$ but $[KL : F] \neq [K : F][L : F]$.

(d) (4 pts) Assume that K/F and L/F are both Galois. Prove that $Gal(KL/F)$ is isomorphic to a subgroup of $Gal(K/F) \times Gal(L/F)$.

(You need not prove that KL/F is Galois).

Note: The assertions of (a),(b) and (d) remain valid for F of positive characteristic, but part (a) has shorter proof in the case of characteristic zero.