Algebra general exam. January 18th 2011, 9am-2pm

Directions.

- Please show all your work and justify any statements that you make.
- State clearly and fully any theorem you use.
- Vague statements and hand-waving arguments will not be appreciated.
- You may assume the statement in an earlier part proven in order to do a later part.

DO EACH PROBLEM ON A SEPARATE SHEET OF PAPER, AND STA-PLE THEM TOGETHER IN THE CORRECT ORDER BEFORE TURN-ING THE EXAM IN.

- **1.** Let G be a group of order 30.
 - (a) (8 pts) Prove that G has a normal subgroup of order 3 or a normal subgroup of order 5.
 - (b) (6 pts) Prove that G has a normal subgroup of order 15.

2. Let p be a prime and G a finite abelian group of p-power order. Denote by

- e(G) the number of elements of order p in G
- s(G) the number of subgroups of order p in G
- t(G) the number of subgroups of index p in G
- h(G) the number of non-trivial homomorphisms from G to $\mathbb{Z}/p\mathbb{Z}$
- (a) (7 pts) Prove that s(G) = e(G)/(p-1) and t(G) = h(G)/(p-1)
- (b) (7 pts) Prove that s(G) = t(G). **Hint:** By (a) this is equivalent to showing that h(G) = e(G). Prove the latter by expressing both quantities in terms of r, the number of summands in the elementary divisor decomposition of G.
- **3.** Prove that the following polynomials are irreducible in $\mathbb{Q}[x]$:
 - (a) (5 pts) $f(x) = x^3 3x^2 + 15x 7$
 - (b) (7 pts) $f(x) = x^5 3x^2 + 15x 7$

Hint for (b): Use reduction mod 3.

4. Let R be a commutative ring with 1, and let Ω be the set of all ideals I of R such that every element of I is 0 or a zero divisor.

- (a) (5 pts) Prove that Ω has a maximal element (with respect to inclusion) and moreover any element of Ω is contained in a maximal element.
- (b) (8 pts) Let I be a maximal element of Ω . Prove that I must be prime.

5. For a field F and a positive integer $n \ge 2$ denote by $M_n(F)$ the set of all $n \times n$ matrices over F.

- (a) (8 pts) Assume that F is algebraically closed of characteristic NOT equal to 2. Prove that for every invertible matrix $A \in M_n(F)$ there exists $B \in M_n(F)$ such that $B^2 = A$.
- (b) (8 pts) Let F be a field of characteristic 2. Find an invertible matrix $A \in M_n(F)$ which cannot be written as B^2 for any $B \in M_n(F)$.

Hint (for both parts): Use the Jordan Canonical Form.

6. Let R be a commutative ring with 1. Let M, N and P be R-modules, and let $\phi: M \to N$ be an R-module homomorphism.

- (a) (4 pts) Prove that there exists unique *R*-module homomorphism Φ : $M \otimes_R P \to N \otimes_R P$ such that $\Phi(m \otimes p) = \phi(m) \otimes p$ for all $m \in M$ and $p \in P$.
- (b) (3 pts) Assume that ϕ is surjective. Prove that Φ from part (b) is also surjective.
- (c) (4 pts) Show by example that if ϕ is injective, Φ need not be injective.

7. Let p be a prime, let $\zeta_p \in \mathbb{C}$ be a primitive p^{th} root of unity and $K = \mathbb{Q}(\zeta_p)$.

- (a) (7 pts) Prove that the extension K/\mathbb{Q} is Galois and $\operatorname{Gal}(K/\mathbb{Q})$ is cyclic of order p-1.
- (b) (5 pts) Prove that K contains a unique subfield L of the form $\mathbb{Q}(\sqrt{m})$ where $m \in \mathbb{Z}$ and m is not a perfect square.

In parts (c)-(e) of this problem let p = 7, and let L denote the subfield found in part (b).

- (c) (2 pts) Find (explicitly) a generator for the group Gal(K/L).
- (d) (3 pts) Find an element $\alpha \in L \setminus \mathbb{Q}$. You may express α as a polynomial in ζ_7 . **Hint:** use (c).
- (e) (3 pts) Find m from part (b) explicitly (it is well defined up to multiplication by a perfect square).