Algebra general exam. August 17th 2009, 9am-1pm

Directions.

• Please show all your work and justify any statements that you make.
• State clearly and fully any theorem you use.
• Vague statements and hand-waving arguments will not be appreciated.
• You may assume the statement in an earlier part proven in order to do a later part.

DO EACH PROBLEM ON A SEPARATE SHEET OF PAPER, AND STAPLE THEM TOGETHER IN THE CORRECT ORDER BEFORE TURNING THE EXAM IN.

1. Let G be a group of order 56 which does NOT have a normal subgroup of order 8.
 (a) (8 pts) Prove that G has a normal subgroup of order 7.
 (b) (4 pts) Prove that G has a subgroup of order 14.
 (c) (4 pts) Prove that G has a normal subgroup of order 14.
 Remark: Of course, you may omit (b) if you correctly answered (c).

2. Let G be a finite group and let H and K be subgroups of G. For each $x \in G$ define $HxK = \{hxk : h \in H, k \in K\}$.
 (a) (3 pts) Prove that for any $x, y \in G$ either $HxK = HyK$ or $HxK \cap HyK = \emptyset$.
 (b) (8 pts) Prove that $|HxK| = \frac{|H||K|}{|H \cap xKx^{-1}|}$. **Hint:** Use group actions: either a suitable action of $H \times K$ on G or a suitable action of H on G/K.

3. (a) (6 pts) Let R be a principal ideal domain and $I \subset R$ a proper nonzero ideal. Prove that if the quotient ring R/I is a domain, then it must be a field.
 (b) (4 pts) Does the assertion of (a) remain true if R is only assumed to be a unique factorization domain? Prove or give a counterexample.

4. Let F be a field and $R = F[x, y]$ the ring of polynomials over R in two (commuting) variables x and y. Let $I = xR$ be the principal ideal of R generated by x and $S = F + I = \{f + i : f \in F, i \in I\}$. Observe that S is a subring of R and I is an ideal of S (you need not justify these facts).
(a) (7 pts) Prove that \(I \) is not finitely generated as an ideal of \(S \).
Hint: Assume that \(I \) is finitely generated as an ideal of \(S \) and reach a contradiction by showing that there must exist a natural number \(m \) such that any polynomial \(p(x, y) \in I \) contains no monomials of the form \(xy^n \), with \(n > m \).

(b) (5 pts) Prove that \(S \) is not finitely generated as a ring.
Hint: It is possible to answer (b) using (a) without doing any computations.

5. (a) (8 pts) Let \(A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 4 \\ 0 & 0 & 1 \end{pmatrix} \in \text{Mat}_3(\mathbb{C}) \). Find the minimal polynomial, the characteristic polynomial and the Jordan canonical form of \(A \).

(b) (7 pts) Let \(J_n(0) \in \text{Mat}_n(\mathbb{C}) \) be the Jordan block of size \(n \) with 0’s on the diagonal. Prove that there exists no matrix \(A \in \text{Mat}_n(\mathbb{C}) \) such that \(A^2 = J_n(0) \).

6. Let \(K/F \) be a finite extension of fields, and let \(\alpha, \beta \in K \) be such that \(K = F(\alpha, \beta) \). Let \(n = [F(\alpha) : F] \) and \(m = [F(\beta) : F] \), and assume that \(n \) and \(m \) are relatively prime.
 (a) (4 pts) Prove that \([K : F] = nm \).
 (b) (6 pts) Assume that \(K/F \) is Galois. Let \(\mu_{\alpha,F}(x) \) and \(\mu_{\beta,F}(x) \) be the minimal polynomials of \(\alpha \) and \(\beta \) over \(F \), respectively. Let \(\alpha' \in K \) be a root of \(\mu_{\alpha,F}(x) \) and let \(\beta' \in K \) be a root of \(\mu_{\beta,F}(x) \). Prove that there exists unique \(\sigma \in \text{Gal}(K/F) \) such that \(\sigma(\alpha) = \alpha' \) and \(\sigma(\beta) = \beta' \).
 (c) (6 pts) Again assume that \(K/F \) is Galois. Let \(S \) be the set of all elements \(c \in F \) such that \(F(\alpha + c\beta) \neq K \). Prove that \(|S| \leq nm \).

7. Let \(F \) be a field and \(K \) a finite-dimensional vector space over \(F \). Let \(n = \dim_F K \), and assume that \(n > 1 \).
 (a) (6 pts) Is it always true that \(K \otimes_F K \cong \text{Mat}_n(F) \) as \(F \)-modules?
 (b) (6 pts) Now assume that \(K \) also has the structure of a commutative ring with 1, so being an \(F \)-vector space, \(K \) becomes an \(F \)-algebra. Recall that in this case \(K \otimes_F K \) possesses unique \(F \)-algebra structure such that \((a \otimes b) \cdot (c \otimes d) = ac \otimes bd \) for \(a, b, c, d \in K \). Prove that \(K \otimes_F K \) cannot be a field.
 Hint: Construct a non-trivial \(F \)-algebra homomorphism \(K \otimes_F K \to K \).

8. (8 pts) Let \(F \) be a field. Prove that the additive and multiplicative groups of \(F \) cannot be isomorphic. **Hint:** Look at the orders of elements in both groups.