Stability of the centers of group algebras of $GL_n(q)$

Jinkui Wan
Beijing Institute of Technology, visiting University of Virginia
(joint with Weiqiang Wang)

University of Virginia, 10/20/18
Outline

1. Stability of Symmetric Groups
2. Stability for $GL_n(q)$
3. Conjectures and Questions
Stability for symmetric groups

Modified type

- Conjugacy classes of symmetric group $S_n \Leftrightarrow \text{Par}_n = \{\text{partitions of } n\}$

 $n = 6$. $\sigma = (1, 3)(2, 4, 5, 6) \leadsto \text{type}$

 $n = 7$. σ again, $\leadsto \text{type}$

- Problem: same σ in S_n and S_{n+1}, different cycle type.

- Solution: delete the first (=green) column.

- Call the remaining partition, type, the modified type of σ
• Conjugacy classes of symmetric group $S_n \Leftrightarrow \text{Par}_n = \{\text{partitions of } n\}$

$n = 6$. $\sigma = (1, 3)(2, 4, 5, 6) \rightsquigarrow \text{type}$

$n = 7$. σ again, $\rightsquigarrow \text{type}$

• Problem: same σ in S_n and S_{n+1}, different cycle type.

• Solution: delete the first (=green) column.

• Call the remaining partition, the **modified type** of σ
Modified type

- Conjugacy classes of symmetric group $S_n \iff \text{Par}_n = \{\text{partitions of } n\}$

$n = 6. \sigma = (1, 3)(2, 4, 5, 6) \sim \text{type}$

$n = 7. \sigma \text{ again, } \sim \text{ type}$

- Problem: same σ in S_n and S_{n+1}, different cycle type.

- Solution: delete the first (=green) column.

- Call the remaining partition, the modified type of σ.
Stability for symmetric groups

Modified type

- Conjugacy classes of symmetric group $S_n \iff Par_n = \{\text{partitions of } n\}$

$n = 6$. $\sigma = (1, 3)(2, 4, 5, 6) \sim \text{type}$

$n = 7$. σ again, $\sim \text{type}$

- Problem: same σ in S_n and S_{n+1}, different cycle type.
- Solution: delete the first (=green) column.

- Call the remaining partition, the modified type of σ.
Modified type

- Conjugacy classes of symmetric group $S_n \leftrightarrow \text{Par}_n = \{\text{partitions of } n\}$

$n = 6$. $\sigma = (1, 3)(2, 4, 5, 6) \rightsquigarrow \text{type}$

$n = 7$. σ again, $\rightsquigarrow \text{type}$

- Problem: same σ in S_n and S_{n+1}, different cycle type.
- Solution: delete the first (=green) column.
- Call the remaining partition, the modified type of σ
Class sums

- σ has modified type $\lambda \Rightarrow |\lambda| = \text{length} \ell(\sigma) := \text{minimal length for } \sigma \text{ as a product of transpositions.}$

- $C_\lambda(n)$: conjugacy class of S_n of modified type λ (if $|\lambda| + \ell(\lambda) \leq n$)

- $c_\lambda(n)$: class sum of the class $C_\lambda(n)$ (if $|\lambda| + \ell(\lambda) \leq n$); otherwise $= 0$.

- Center of the group algebra, $\mathcal{Z}(\mathbb{Z}S_n)$, has a \mathbb{Z}-basis $\{c_\lambda(n) \mid \lambda \in \text{Par}\} \setminus \{0\}$.

(Here $\text{Par} = \bigcup_n \text{Par}_n$.)
Class sums

- \(\sigma \) has modified type \(\lambda \Rightarrow |\lambda| = \text{length } \ell \ell(\sigma) := \text{minimal length for } \sigma \text{ as a product of transpositions.} \)

- \(C_\lambda(n) \): conjugacy class of \(S_n \) of modified type \(\lambda \) (if \(|\lambda| + \ell(\lambda) \leq n \))

- \(c_\lambda(n) \): class sum of the class \(C_\lambda(n) \) (if \(|\lambda| + \ell(\lambda) \leq n \)); otherwise = 0.

- Center of the group algebra, \(\mathcal{Z}(\mathbb{Z}S_n) \), has a \(\mathbb{Z} \)-basis \(\{ c_\lambda(n) \mid \lambda \in \text{Par} \} \setminus \{0\} \).
 (Here \(\text{Par} = \bigcup_n \text{Par}_n \).)
Stability for symmetric groups

Class sums

- σ has modified type $\lambda \Rightarrow |\lambda| = \text{length } \ell(\sigma) := \text{minimal length for } \sigma \text{ as a product of transpositions}.$

- $C_\lambda(n)$: conjugacy class of S_n of modified type λ (if $|\lambda| + \ell(\lambda) \leq n$)

- $c_\lambda(n)$: class sum of the class $C_\lambda(n)$ (if $|\lambda| + \ell(\lambda) \leq n$); otherwise $= 0$.

- Center of the group algebra, $\mathbb{Z}(\mathbb{Z}S_n)$, has a \mathbb{Z}-basis $\{c_\lambda(n) \mid \lambda \in \text{Par}\} \setminus \{0\}$. (Here $\text{Par} = \bigcup_n \text{Par}_n.$)
Class sums

- σ has modified type $\lambda \Rightarrow |\lambda| = \text{length} \ell(\sigma) := \text{minimal length for } \sigma \text{ as a product of transpositions.}

- $C_\lambda(n)$: conjugacy class of S_n of modified type λ (if $|\lambda| + \ell(\lambda) \leq n$)

- $c_\lambda(n)$: class sum of the class $C_\lambda(n)$ (if $|\lambda| + \ell(\lambda) \leq n$); otherwise $= 0$.

- Center of the group algebra, $\mathcal{Z}(\mathbb{Z}S_n)$, has a \mathbb{Z}-basis $\{c_\lambda(n) \mid \lambda \in \text{Par}\} \setminus \{0\}$.

(Note here $\text{Par} = \bigcup_n \text{Par}_n$.)
Stability for symmetric groups

An example of structure constants

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_\lambda(n)c_\mu(n) = \sum_\nu g_{\lambda\mu}^\nu(n)c_\nu(n), \quad \text{for } g_{\lambda\mu}^\nu(n) \in \mathbb{N}.$$

Example

$c_{(1)}(n) := \text{class sum of transpositions (=reflections) } (i, j) \text{ in } S_n.$

$$c_{(1)}(n) c_{(1)}(n) = n(n - 1)/2 c_{\emptyset}(n) + ?? c_{(1,1)}(n) + ??? c_{(2)}(n)$$

(independent of n)
Stability for symmetric groups

An example of structure constants

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_\lambda(n)c_\mu(n) = \sum_\nu g^{\nu}_{\lambda\mu}(n)c_\nu(n), \quad \text{for } g^{\nu}_{\lambda\mu}(n) \in \mathbb{N}.$$

Example

$c_{(1)}(n) := \text{class sum of transpositions (=reflections) } (i, j) \text{ in } S_n.$

$$c_{(1)}(n) \cdot c_{(1)}(n) = n(n - 1)/2 \cdot c_{\emptyset}(n) + ?? \cdot c_{(1,1)}(n) + ??\cdot c_{(2)}(n)$$

(independent of n)
An example of structure constants

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_\lambda(n)c_\mu(n) = \sum_\nu g_{\lambda\mu}^{\nu}(n)c_\nu(n), \quad \text{for } g_{\lambda\mu}^{\nu}(n) \in \mathbb{N}. $$

Example

$c_{(1)}(n) := \text{class sum of transpositions (=reflections) } (i,j) \text{ in } S_n.$

$$c_{(1)}(n) \cdot c_{(1)}(n) = n(n-1)/2 \cdot c_\emptyset(n) + \ldots$$

(independent of n)
Stability for symmetric groups

An example of structure constants

Write the multiplication in the center \(\mathcal{Z}(\mathbb{Z}S_n) \) as

\[
c_{\lambda}(n)c_{\mu}(n) = \sum_{\nu} g_{\lambda\mu}^{\nu}(n)c_{\nu}(n), \quad \text{for } g_{\lambda\mu}^{\nu}(n) \in \mathbb{N}.
\]

Example

\(c_{(1)}(n) := \text{class sum of transpositions (=reflections) } (i, j) \text{ in } S_n.\)

\[
c_{(1)}(n) c_{(1)}(n) = n(n - 1)/2 \ c_{\emptyset}(n) + \ldots \ c_{(1,1)}(n) + \ldots \ c_{(2)}(n)
\]

(independent of n)
An example of structure constants

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_\lambda(n)c_\mu(n) = \sum_\nu g_{\lambda\mu}^\nu(n)c_\nu(n), \quad \text{for } g_{\lambda\mu}^\nu(n) \in \mathbb{N}.$$

Example

$c_{(1)}(n) := \text{class sum of transpositions (=} \text{reflections} (i, j) \text{ in } S_n.$

$$c_{(1)}(n) c_{(1)}(n) = n(n-1)/2 \ c_{(\emptyset)}(n) + ?? \ c_{(1,1)}(n) + ?? ? \ c_{(2)}(n)$$

(independent of n)
Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_\lambda(n)c_\mu(n) = \sum_\nu g^{\nu}_{\lambda\mu}(n)c_\nu(n), \quad \text{for } g^{\nu}_{\lambda\mu}(n) \in \mathbb{N}.$$

Example

$c_{(1)}(n) := \text{class sum of transpositions (=reflections) } (i,j) \text{ in } S_n.$

$$c_{(1)}(n) c_{(1)}(n) = n(n-1)/2 \ c_\emptyset(n) + ?? \ c_{(1,1)}(n) + ??? \ c_{(2)}(n)$$

(independent of n)
An example of structure constants

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_\lambda(n)c_\mu(n) = \sum_\nu g_{\chi\mu}^\nu(n)c_\nu(n), \quad \text{for } g_{\chi\mu}^\nu(n) \in \mathbb{N}.$$

Example

$$c_{(1)}(n) := \text{class sum of transpositions (}=\text{reflections}) (i, j) \text{ in } S_n.$$

$$c_{(1)}(n) c_{(1)}(n) = n(n - 1)/2 c_{\emptyset}(n) + \ldots c_{(1,1)}(n) + \ldots c_{(2)}(n)$$

(independent of n)
Stability for symmetric groups

Stable structure constants

Theorem (Farahat-Higman’59)

1. $g_{\lambda \mu}^\nu(n)$ is polynomial in n
2. $g_{\lambda \mu}^\nu(n) = 0$ unless $|\nu| \leq |\lambda| + |\mu|$
3. If $|\nu| = |\lambda| + |\mu|$, then $g_{\lambda \mu}^\nu(n) = g_{\lambda \mu}^\nu$ is independent of n

- **Application**: modular representation theory of S_n
- **Connections**: Jucys-Murphy elements
Stability for symmetric groups

Stable structure constants

Theorem (Farahat-Higman’59)

1. \(g_{\lambda\mu}^\nu(n) \) is polynomial in \(n \)
2. \(g_{\lambda\mu}^\nu(n) = 0 \) unless \(|\nu| \leq |\lambda| + |\mu| \)
3. If \(|\nu| = |\lambda| + |\mu| \), then \(g_{\lambda\mu}^\nu(n) = g_{\lambda\mu}^\nu \) is independent of \(n \)

- Application: modular representation theory of \(S_n \)
- Connections: Jucys-Murphy elements
Stability for symmetric groups

Stable structure constants

Theorem (Farahat-Higman’59)

1. \(g_{\lambda \mu}^{\nu}(n) \) is polynomial in \(n \)
2. \(g_{\lambda \mu}^{\nu}(n) = 0 \) unless \(|\nu| \leq |\lambda| + |\mu| \)
3. If \(|\nu| = |\lambda| + |\mu| \), then \(g_{\lambda \mu}^{\nu}(n) = g_{\lambda \mu}^{\nu} \) is independent of \(n \)

- Application: modular representation theory of \(S_n \)
- Connections: Jucys-Murphy elements
Stability for symmetric groups

Stable structure constants

Theorem (Farahat-Higman’59)

1. \(g_{\lambda \mu}^\nu(n) \) is polynomial in \(n \)
2. \(g_{\lambda \mu}^\nu(n) = 0 \) unless \(|\nu| \leq |\lambda| + |\mu| \)
3. If \(|\nu| = |\lambda| + |\mu| \), then \(g_{\lambda \mu}^\nu(n) = g_{\lambda \mu}^\nu \) is independent of \(n \)

- **Application**: modular representation theory of \(S_n \)
- **Connections**: Jucys-Murphy elements
Stability of symmetric groups

Stability for \(GL_n(q) \)

Conjectures and questions

Stability for symmetric groups

Stable structure constants

Theorem (Farahat-Higman’59)

1. \(g_{\lambda \mu}^\nu (n) \) is polynomial in \(n \)
2. \(g_{\lambda \mu}^\nu (n) = 0 \) unless \(|\nu| \leq |\lambda| + |\mu| \)
3. If \(|\nu| = |\lambda| + |\mu| \), then \(g_{\lambda \mu}^\nu (n) = g_{\lambda \mu}^\nu \) is independent of \(n \)

- **Application:** modular representation theory of \(S_n \)
- **Connections:** Jucys-Murphy elements
A stable ring

- S_n and the center $\mathbb{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

1. The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_\lambda(n)c_\mu(n) = \sum_{|\nu| = |\lambda| + |\mu|} g_{\lambda\mu}^{\nu} c_\nu(n)$

2. \exists a stable center $``\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)``$ with basis $\{c_\lambda | \lambda \in \text{Par}\}$ and $c_\lambda c_\mu = \sum_{|\nu| = |\lambda| + |\mu|} g_{\lambda\mu}^{\nu} c_\nu$

3. \exists an epi $``\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)`` \longrightarrow \mathbb{Z}^{gr}(\mathbb{Z}S_n)$, $c_\lambda \mapsto c_\lambda(n)$.

Connection:

1. The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} ``\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)``$ is a polynomial algebra in $c_{(r)}$, $r \geq 1$ and $``\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)`` \cong \Lambda$.

2. $\mathbb{Z}^{gr,*}(\mathbb{Z}S_n) \cong H^{2*}(\text{Hilb}^n(\mathbb{C}^2), \mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Vasserot].
A stable ring

- S_n and the center $\mathcal{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

1. The associated graded $\mathcal{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_{\lambda}(n)c_{\mu}(n) = \sum_{|\nu|=|\lambda|+|\mu|} g_{\lambda\mu}^{\nu} c_{\nu}(n)$

2. \exists a stable center "$\mathcal{Z}^{gr}(\mathbb{Z}S_\infty)$" with basis $\{c_{\lambda} | \lambda \in Par\}$ and $c_{\lambda}c_{\mu} = \sum_{|\nu|=|\lambda|+|\mu|} g_{\lambda\mu}^{\nu} c_{\nu}$

3. \exists an epi "$\mathcal{Z}^{gr}(\mathbb{Z}S_\infty)$" \rightarrow $\mathcal{Z}^{gr}(\mathbb{Z}S_n)$, $c_{\lambda} \mapsto c_{\lambda}(n)$.

Connection:

1. The stable center $\mathcal{Q} \otimes_{\mathbb{Z}} "\mathcal{Z}^{gr}(\mathbb{Z}S_\infty)"$ is a polynomial algebra in $c_{(r)}$, $r \geq 1$ and "$\mathcal{Z}^{gr}(\mathbb{Z}S_\infty)$" $\cong \Lambda$.

2. $\mathcal{Z}^{gr,*}(\mathbb{Z}S_n) \cong H^{2*}(\text{Hilb}^n(\mathbb{C}^2), \mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Vasserot]
A stable ring

- S_n and the center $\mathbb{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

1. The associated graded $\mathbb{Z}^{\text{gr}}(\mathbb{Z}S_n)$ has structure constants independent of n:
 $$c_\lambda(n)c_\mu(n) = \sum_{|\nu| = |\lambda| + |\mu|} g_{\lambda\mu}^{\nu} c_\nu(n)$$

2. There exists a stable center “$\mathbb{Z}^{\text{gr}}(\mathbb{Z}S_\infty)$” with basis $\{c_\lambda | \lambda \in \text{Par}\}$ and
 $$c_\lambda c_\mu = \sum_{|\nu| = |\lambda| + |\mu|} g_{\lambda\mu}^{\nu} c_\nu$$

3. There exists an epi “$\mathbb{Z}^{\text{gr}}(\mathbb{Z}S_\infty)$” $\twoheadrightarrow \mathbb{Z}^{\text{gr}}(\mathbb{Z}S_n)$, $c_\lambda \mapsto c_\lambda(n)$.

Connection:

1. The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^{\text{gr}}(\mathbb{Z}S_\infty)$ is a polynomial algebra in $c_\lambda(r)$, $r \geq 1$ and “$\mathbb{Z}^{\text{gr}}(\mathbb{Z}S_\infty)$” $\cong \Lambda$.

2. $\mathbb{Z}^{\text{gr},*}(\mathbb{Z}S_n) \cong H^2(\text{Hilb}^n(\mathbb{C}^2), \mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Vasserot].
A stable ring

- S_n and the center $\mathbb{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

1. The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_\lambda(n)c_\mu(n) = \sum |\nu| = |\lambda| + |\mu| g^{\nu}_{\lambda\mu} c_\nu(n)$
2. There exists a stable center "$\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)$" with basis $\{c_\lambda \mid \lambda \in \text{Par}\}$ and $c_\lambda c_\mu = \sum |\nu| = |\lambda| + |\mu| g^{\nu}_{\lambda\mu} c_\nu$
3. There exists an epi "$\mathbb{Z}^{gr}(\mathbb{Z}S_\infty) \twoheadrightarrow \mathbb{Z}^{gr}(\mathbb{Z}S_n)$, $c_\lambda \mapsto c_\lambda(n)$.

Connection:

1. The stable center $\mathbb{Q} \otimes_\mathbb{Z} "\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)"$ is a polynomial algebra in $c(r), r \geq 1$ and "$\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)$" $\cong \Lambda$.
2. $\mathbb{Z}^{gr,*}(\mathbb{Z}S_n) \cong H^2(\text{Hilb}^n(\mathbb{C}^2), \mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Vasserot].
A stable ring

- S_n and the center $\mathbb{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

1. The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_{\lambda}(n)c_{\mu}(n) = \sum_{|\nu|=|\lambda|+|\mu|} g^{\nu}_{\lambda\mu} c_{\nu}(n)$

2. \exists a stable center "$\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)$" with basis $\{c_\lambda \mid \lambda \in \text{Par}\}$ and $c_\lambda c_\mu = \sum_{|\nu|=|\lambda|+|\mu|} g^{\nu}_{\lambda\mu} c_{\nu}$

3. \exists an epi "$\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)$" $\longrightarrow \mathbb{Z}^{gr}(\mathbb{Z}S_n)$, $c_\lambda \mapsto c_\lambda(n)$.

Connection:

1. The stable center $\mathbb{Q} \otimes_\mathbb{Z} \ "\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)"$ is a polynomial algebra in $c_{(r)}$, $r \geq 1$ and $\ "\mathbb{Z}^{gr}(\mathbb{Z}S_\infty)" \cong \Lambda$.

2. $\mathbb{Z}^{gr,*}(\mathbb{Z}S_n) \cong H^{2*}(\text{Hilb}^n(\mathbb{C}^2), \mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Vasserot].
A stable ring

- S_n and the center $\mathcal{Z}(\mathbb{Z} S_n)$ admits a filtration by $\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

1. The associated graded $\mathcal{Z}^{gr}(\mathbb{Z} S_n)$ has structure constants independent of n: $c_\lambda(n)c_\mu(n) = \sum_{|\nu|=|\lambda|+|\mu|} g_{\lambda\mu}^\nu c_\nu(n)$

2. There exists a stable center "$\mathcal{Z}^{gr}(\mathbb{Z} S_\infty)$" with basis $\{c_\lambda \mid \lambda \in \text{Par}\}$ and $c_\lambda c_\mu = \sum_{|\nu|=|\lambda|+|\mu|} g_{\lambda\mu}^\nu c_\nu$

3. There exists an epimorphism "$\mathcal{Z}^{gr}(\mathbb{Z} S_\infty)$" $\longrightarrow \mathcal{Z}^{gr}(\mathbb{Z} S_n), c_\lambda \mapsto c_\lambda(n)$.

Connection:

1. The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} "\mathcal{Z}^{gr}(\mathbb{Z} S_\infty)"$ is a polynomial algebra in $c_{(r)}$, $r \geq 1$ and "$\mathcal{Z}^{gr}(\mathbb{Z} S_\infty)$" $\cong \Lambda$.

2. $\mathcal{Z}^{gr,*}(\mathbb{Z} S_n) \cong H^{2*}(\text{Hilb}^n(\mathbb{C}^2), \mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Vasserot].
Wreath products

• Γ: a finite group

• $\Gamma_n := \Gamma^n \rtimes S_n$ – a wreath product

• [Wang’04]. Generalization of Farahat-Higman stability to Γ_n.

• Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(\text{Hilb}^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$

• Analogous stability for
 (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang’04]
 (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang’04]

• [Francis-Wang’09]. Analogous stability for Hecke algebra associated to S_n.
Wreath products

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ – a wreath product
- [Wang’04]. Generalization of Farahat-Higman stability to Γ_n.
 - Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(\text{Hilb}^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
 - Analogous stability for
 (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang’04]
 (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang’04]
- [Francis-Wang’09]. Analogous stability for Hecke algebra associated to S_n.

Wreath products

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ – a wreath product
- [Wang’04]. Generalization of Farahat-Higman stability to Γ_n.
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(\text{Hilb}^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
- Analogous stability for
 (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang’04]
 (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang’04]
- [Francis-Wang’09]. Analogous stability for Hecke algebra associated to S_n.
Wreath products

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ – a wreath product
- [Wang’04]. Generalization of Farahat-Higman stability to Γ_n.
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^2(\text{Hilb}^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$

- Analogous stability for
 (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang’04]
 (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang’04]
- [Francis-Wang’09]. Analogous stability for Hecke algebra associated to S_n.
Wreath products

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ – a wreath product
- [Wang'04]. Generalization of Farahat-Higman stability to Γ_n.
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(\text{Hilb}^{\Gamma}(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
- Analogous stability for
 (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang'04]
 (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang’04]
- [Francis-Wang’09]. Analogous stability for Hecke algebra associated to S_n.
Wreath products

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ — a wreath product
- [Wang’04]. Generalization of Farahat-Higman stability to Γ_n.
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^2{}^*(\text{Hilb}^n(\mathbb{C}^2/\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces \mathbb{C}^2/Γ
- Analogous stability for
 (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang’04]
 (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang’04]
- [Francis-Wang’09]. Analogous stability for Hecke algebra associated to S_n.
Reflection filtration on $GL_n(q)$

- $G_n := GL_n(q) = \{ g \in \text{Mat}_n(\mathbb{F}_q) \text{ invertible} \}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n: $g \in G_n$ such that $\text{codim } V^g = 1$.

 (i) $\text{diag}(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2})$, or conjugates – (unipotent)

 (ii) $\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$ with $\xi \in \mathbb{F}_q \setminus \{0, 1\}$, or conjugates – (semisimple)

- Fact. G_n is generated by reflections.

 Proof. Gaussian elimination (Linear Algebra)

- Assigning $\ell\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n

 This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$
Reflection filtration on $GL_n(q)$

- $G_n := GL_n(q) = \{ g \in \text{Mat}_n(\mathbb{F}_q) \text{ invertible} \}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n: $g \in G_n$ such that $\text{codim } V^g = 1$.

 (i) $\text{diag} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, l_{n-2}$, or conjugates – (unipotent)

 (ii) $\begin{pmatrix} \xi & 0 \\ 0 & T_{n-1} \end{pmatrix}$ with $\xi \in \mathbb{F}_q \setminus \{0, 1\}$, or conjugates – (semisimple)

- Fact. G_n is generated by reflections.

 Proof. Gaussian elimination (Linear Algebra)

- Assigning $\ell(g) = \text{minimal length of } g \in G_n$ as products of reflections defines a filtered ring structure on G_n.

 This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$.
Reflection filtration on $GL_n(q)$

- $G_n := GL_n(q) = \{ g \in \text{Mat}_n(F_q) \text{ invertible} \}$ acts on $V = F_q^n$.
- **Reflections** on G_n: $g \in G_n$ such that $\text{codim} \ V^g = 1$.

 (i) $\text{diag} \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \right)$, or conjugates – (unipotent)

 (ii) $\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$ with $\xi \in F_q \setminus \{0, 1\}$, or conjugates – (semisimple)

- **Fact.** G_n is generated by reflections.

 Proof. Gaussian elimination (Linear Algebra)

- Assigning $\ell(g) = \text{minimal length of } g \in G_n$ as products of reflections defines a filtered ring structure on G_n

 This induces a filtration on the center of the group algebra $Z_n(q) := Z(\mathbb{Z}GL_n(q))$
Reflection filtration on $GL_n(q)$

- $G_n := GL_n(q) = \{ g \in \text{Mat}_n(\mathbb{F}_q) \text{ invertible} \}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n: $g \in G_n$ such that $\text{codim } V^g = 1$.

 (i) $\text{diag} \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \right)$, or conjugates – (unipotent)

 (ii) $\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$ with $\xi \in \mathbb{F}_q \setminus \{0, 1\}$, or conjugates – (semisimple)

- Fact. G_n is generated by reflections.

 Proof. Gaussian elimination (Linear Algebra)

 - Assigning $\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n.

This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$.
Reflection filtration on \(GL_n(q) \)

- \(G_n := GL_n(q) = \{ g \in \text{Mat}_n(\mathbb{F}_q) \text{ invertible} \} \) acts on \(V = \mathbb{F}_q^n \).
- **Reflections** on \(G_n \): \(g \in G_n \) such that \(\text{codim} \ V^g = 1 \).
 1. \(\text{diag} \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \right) \), or conjugates – (unipotent)
 2. \(\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix} \) with \(\xi \in \mathbb{F}_q \setminus \{0, 1\} \), or conjugates – (semisimple)

- **Fact.** \(G_n \) is generated by reflections.

 Proof. Gaussian elimination (Linear Algebra)

- Assigning \(\ell(g) \) = minimal length of \(g \in G_n \) as products of reflections defines a filtered ring structure on \(G_n \).
 This induces a filtration on the center of the group algebra \(\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q)) \).
Reflection filtration on $GL_n(q)$

- $G_n := GL_n(q) = \{g \in \text{Mat}_n(\mathbb{F}_q) \text{ invertible}\}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n: $g \in G_n$ such that $\text{codim} \ V^g = 1$.

 (i) $\text{diag} \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \right)$, or conjugates – (unipotent)

 (ii) $\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$ with $\xi \in \mathbb{F}_q \setminus \{0, 1\}$, or conjugates – (semisimple)

- Fact. G_n is generated by reflections.

 Proof. Gaussian elimination (Linear Algebra)

- Assigning $\ell(g) = \text{minimal length of } g \in G_n$ as products of reflections defines a filtered ring structure on G_n

This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$
Reflection filtration on $GL_n(q)$

- $G_n := GL_n(q) = \{ g \in \text{Mat}_n(\mathbb{F}_q) \text{ invertible} \}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n: $g \in G_n$ such that codim $V^g = 1$.

(i) $\text{diag} \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \right)$, or conjugates – (unipotent)

(ii) $\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$ with $\xi \in \mathbb{F}_q \setminus \{0, 1\}$, or conjugates – (semisimple)

- Fact. G_n is generated by reflections.

 Proof. Gaussian elimination (Linear Algebra)

- Assigning $\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n
This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$
Conjguacy classes of $GL_n(q)$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\}\setminus\{t\}$
- $g \in G_n$ gives a $\mathbb{F}_q[t]$-module on $V_g = \mathbb{F}_q^n$, $t \cdot v = gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \bigoplus F_q[t]/(f)^m$, for suitable $f \in \Phi$, $m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = \|\lambda\| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \iff \{\lambda \mid \|\lambda\| = n\}$
- For $f = t^d - \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$
Conjugacy classes of $GL_n(q)$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- $g \in G_n$ gives a $\mathbb{F}_q[t]$-module on $V_g = \mathbb{F}_q^n$, $t \cdot v = gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_\lambda = \oplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$ for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = \|\lambda\| : = \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \iff \{\lambda \mid \|\lambda\| = n\}$
- For $f = t^d - \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 \\ 0 & J(f) & I_d & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) \\ 0 & 0 & 0 & \cdots & I_d \end{bmatrix}.$$
Conjguacy classes of $GL_n(q)$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- $g \in G_n$ gives a $\mathbb{F}_q[t]$-module on $V_g = \mathbb{F}_q^n$, $t \cdot v = gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \bigoplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi$, $m \geq 1$.

Then $V_g \cong V_\lambda = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| = \sum_f |\lambda(f)|$; λ is the type of g

- Basic fact. Conjguacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d - \sum_{i=1}^d a_i t^{i-1} \in \Phi,$

$$J(f) = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_1 & a_2 & a_3 & \cdots & a_d
\end{bmatrix}, \quad J_m(f) = \begin{bmatrix}
J(f) & I_d & 0 & \cdots & 0 & 0 \\
0 & J(f) & I_d & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & J(f) & I_d \\
0 & 0 & 0 & \cdots & 0 & J(f)
\end{bmatrix}$$
Conjguacy classes of $GL_n(q)$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- $g \in G_n$ gives a $\mathbb{F}_q[t]$-module on $V_g = \mathbb{F}_q^n$, $t \cdot v = gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \bigoplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi$, $m \geq 1$.
- Then $V_g \cong V_\lambda = \bigoplus_{f \in \Phi} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = \|\lambda\| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid \|\lambda\| = n\}$
- For $f = t^d - \sum_{i=1}^d a_it^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$
Stability for $GL_n(q)$

Conjgucy classes of $GL_n(q)$

- $\Phi = \{ \text{irreducible monic polynomials in } \mathbb{F}_q[t] \} \setminus \{ t \}$
- $g \in G_n$ gives a $\mathbb{F}_q[t]$-module on $V_g = \mathbb{F}_q^n$, \quad $t \cdot v = gv$
- $\mathbb{F}_q[t]$ is PID \Rightarrow $V_g \cong \bigoplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi$, $m \geq 1$.
- Then $V_g \cong V_\lambda = \bigoplus_{f \in \Phi} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| := \sum_f |\lambda(f)|$; λ is the type of g

- Basic fact. Conjugacy classes of $G_n \leftrightarrow \{ \lambda \mid ||\lambda|| = n \}$
- For $f = t^d - \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_1 & a_2 & a_3 & \cdots & a_d \\
\end{bmatrix}, \quad J_m(f) = \\
\begin{bmatrix}
J(f) & l_d & 0 & \cdots & 0 \\
0 & J(f) & l_d & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & J(f) \\
0 & 0 & 0 & \cdots & l_d \\
\end{bmatrix}$$
Conjugacy classes of $GL_n(q)$

- $\Phi = \{\text{irreducible monic polynomials in } F_q[t]\}\setminus \{t\}$
- $g \in G_n$ gives a $F_q[t]$-module on $V_g = F_q^n$, $t \cdot v = gv$
- $F_q[t]$ is PID $\Rightarrow V_g \cong \bigoplus F_q[t]/(f)^m$, for suitable $f \in \Phi$, $m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi} F_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = \|\lambda\| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \iff \{\lambda \mid \|\lambda\| = n\}$
- For $f = t^d - \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 \\ 0 & J(f) & I_d & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$
Conjugacy classes of $GL_n(q)$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- $g \in G_n$ gives a $\mathbb{F}_q[t]$-module on $V_g = \mathbb{F}_q^n$, $t \cdot v = g v$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \bigoplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| := \sum_f |\lambda(f)|$; λ is the type of g
- **Basic fact.** Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d - \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ a_1 & a_2 & a_3 & \ldots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \ldots & 0 \\ 0 & J(f) & I_d & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J(f) \\ 0 & 0 & 0 & \ldots & I_d \end{bmatrix}$$
Conjguacy classes of $GL_n(q)$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- $g \in G_n$ gives a $\mathbb{F}_q[t]$-module on $V_g = \mathbb{F}_q^n$, $t \cdot v = g v$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \bigoplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi$, $m \geq 1$.
- Then $V_g \cong V_\lambda = \bigoplus_{f \in \Phi} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| := \sum_f |\lambda(f)|$; λ is the type of g
- **Basic fact.** Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d - \sum_{i=1}^{d} a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix} , \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 \\ 0 & J(f) & I_d & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) \\ 0 & 0 & 0 & \cdots & I_d \end{bmatrix}.$$
Modified type

- Let \(g \in G_n \) be of type \(\lambda \). Define modified type \(\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi} \):

 (i) \(\tilde{\lambda}(f) = \lambda(f) \), for \(f \neq t - 1 \)

 (ii) \(\tilde{\lambda}(t - 1) = \"\lambda(t - 1) with 1^{st} column removed\" \) (as for \(S_n \))

- Fact. \(\ell\ell(g) = \|\mu\| \), for \(g \) of modified type \(\mu \)

Example

The lengths of the following matrices are \(d \) and \(d - 1 \), respectively:

\[
J_f = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_1 & a_2 & a_3 & \cdots & a_d
\end{bmatrix}, \quad J_m(t - 1) = \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}
\]
Modified type

- Let \(g \in G_n \) be of type \(\lambda \). Define modified type \(\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi} \):

 (i) \(\tilde{\lambda}(f) = \lambda(f) \), for \(f \neq t - 1 \)

 (ii) \(\tilde{\lambda}(t - 1) = "\lambda(t - 1) \) with 1\(^{st}\) column removed" (as for \(S_n \))

- Fact. \(\ell\ell(g) = \|\mu\| \), for \(g \) of modified type \(\mu \)

Example

The lengths of the following matrices are \(d \) and \(d - 1 \), respectively:

\[
J_f = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_1 & a_2 & a_3 & \cdots & a_d
\end{bmatrix}, \quad J_m(t - 1) = \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}
\]
Modified type

Let \(g \in G_n \) be of type \(\lambda \). Define modified type \(\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi} \):

1. \(\tilde{\lambda}(f) = \lambda(f) \), for \(f \neq t - 1 \)
2. \(\tilde{\lambda}(t - 1) = "\lambda(t - 1) \text{ with } 1^{st} \text{ column removed}" \) (as for \(S_n \))

Fact. \(\ell\ell(g) = ||\mu|| \), for \(g \) of modified type \(\mu \)

Example

The lengths of the following matrices are \(d \) and \(d - 1 \), respectively:

\[
J_f = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_1 & a_2 & a_3 & \cdots & a_d
\end{bmatrix}, \quad J_m(t - 1) = \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}
\]
Stability for $GL_n(q)$

Modified type

- Let $g \in G_n$ be of type λ. Define modified type $\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi}$:

 (i) $\tilde{\lambda}(f) = \lambda(f)$, for $f \neq t - 1$

 (ii) $\tilde{\lambda}(t - 1) = "\lambda(t - 1) with 1^{st} column removed"$ (as for S_n)

- Fact. $\ell \ell (g) = \|\mu\|$, for g of modified type μ

Example

The lengths of the following matrices are d and $d - 1$, respectively:

$$J_f = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(t - 1) = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$
Modified type

- Let \(g \in G_n \) be of type \(\lambda \). Define modified type \(\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi} \):

 (i) \(\tilde{\lambda}(f) = \lambda(f) \), for \(f \neq t - 1 \)

 (ii) \(\tilde{\lambda}(t - 1) = \"\lambda(t - 1) with 1^{st} column removed\" \) (as for \(S_n \))

- Fact. \(\ell\ell(g) = \|\mu\| \), for \(g \) of modified type \(\mu \)

Example

The lengths of the following matrices are \(d \) and \(d - 1 \), respectively:

\[
J_f = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
& \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_1 & a_2 & a_3 & \cdots & a_d
\end{bmatrix}, \quad J_m(t - 1) = \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & \cdots & 0 \\
& \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}
\]
Modified type

- Let \(g \in G_n \) be of type \(\lambda \). Define modified type \(\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi} \):

 (i) \(\tilde{\lambda}(f) = \lambda(f) \), for \(f \neq t - 1 \)

 (ii) \(\tilde{\lambda}(t - 1) = "\lambda(t - 1) with 1^{st} column removed" \) (as for \(S_n \))

- Fact. \(\ell \ell(g) = \|\mu\| \), for \(g \) of modified type \(\mu \)

Example

The lengths of the following matrices are \(d \) and \(d - 1 \), respectively:

\[
J_f = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_1 & a_2 & a_3 & \cdots & a_d
\end{bmatrix}, \quad J_m(t - 1) = \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}
\]
Modified type, II

- [Huang-Lewis-Reiner ’17]

(i) \(\ell \ell(g) = \text{codim } V^g \)

(ii) Let \(\lambda, \mu, \nu \) be the modified types of \(g, h, gh \). If \(\|\lambda\| + \|\mu\| = \|\nu\| \), then \(V^g \cap V^h = V^{gh} \) and \(V = V^g + V^h \)
Modified type, II

- [Huang-Lewis-Reiner ’17]

(i) $\ell\ell(g) = \text{codim } V^g$

(ii) Let λ, μ, ν be the modified types of g, h, gh. If $\|\lambda\| + \|\mu\| = \|\nu\|$, then $V^g \cap V^h = V^{gh}$ and $V = V^g + V^h$
Stability for $GL_n(q)$

Stable structure constants

- $K_\lambda(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t - 1)) \leq n$); otherwise $= 0$.

- The multiplication in the center is

$$K_\lambda(n)K_\mu(n) = \sum_\nu a^\nu_{\lambda\mu}(n)K_\nu(n),$$

for $a^\nu_{\lambda\mu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang’18)

1. $a^\nu_{\lambda\mu}(n) = 0$ unless $\|\nu\| \leq \|\lambda\| + \|\mu\|$

2. If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a^\nu_{\lambda\mu}(n) = a^\nu_{\lambda\mu}$ is independent of n.

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

[Méliot’14] $a^\nu_{\lambda\mu}(n)$ is polynomial in q^n. (His formulation does not use the modified type or filtration length.)
Stability for $GL_n(q)$

Stable structure constants

- $K_\lambda(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t - 1)) \leq n$); otherwise $= 0$.

- The multiplication in the center is $K_\lambda(n)K_\mu(n) = \sum_\nu a^\nu_{\lambda,\mu}(n)K_\nu(n)$, for $a^\nu_{\lambda,\mu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang’18)

1. $a^\nu_{\lambda,\mu}(n) = 0$ unless $\|\nu\| \leq \|\lambda\| + \|\mu\|$
2. If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a^\nu_{\lambda,\mu}(n) = a^\nu_{\lambda,\mu}$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

[Mériot’14] $a^\nu_{\lambda,\mu}(n)$ is polynomial in q^n. (His formulation does not use the modified type or filtration length.)
Stability for $GL_n(q)$

Stable structure constants

- $K_\lambda(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \leq n$); otherwise $= 0$.

- The multiplication in the center is

 $K_\lambda(n)K_\mu(n) = \sum_\nu a^\nu_{\lambda\mu}(n)K_\nu(n)$, for $a^\nu_{\lambda\mu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang’18)

1. $a^\nu_{\lambda\mu}(n) = 0$ unless $\|\nu\| \leq \|\lambda\| + \|\mu\|$.
2. If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a^\nu_{\lambda\mu}(n) = a^\nu_{\lambda\mu}$ is independent of n.

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

[Méliot’14] $a^\nu_{\lambda\mu}(n)$ is polynomial in q^n. (His formulation does not use the modified type or filtration length.)
Stability for $GL_n(q)$

Stable structure constants

- $K_\lambda(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \leq n$); otherwise $= 0$.

- The multiplication in the center is

 $K_\lambda(n)K_\mu(n) = \sum_\nu a_{\lambda\mu}^\nu(n)K_\nu(n)$, for $a_{\lambda\mu}^\nu(n) \in \mathbb{N}$.

Theorem 1 (W-Wang’18)

1. $a_{\lambda\mu}^\nu(n) = 0$ unless $\|\nu\| \leq \|\lambda\| + \|\mu\|$
2. If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a_{\lambda\mu}^\nu(n) = a_{\lambda\mu}^\nu$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

[Méliot’14] $a_{\lambda\mu}^\nu(n)$ is polynomial in q^n. (His formulation does not use the modified type or filtration length.)
Stability for $GL_n(q)$

Stable structure constants

- $K_\lambda(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \leq n$); otherwise $= 0$.

- The multiplication in the center is $K_\lambda(n)K_\mu(n) = \sum_\nu a^\nu_{\lambda\mu}(n)K_\nu(n)$, for $a^\nu_{\lambda\mu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang’18)

1. $a^\nu_{\lambda\mu}(n) = 0$ unless $\|\nu\| \leq \|\lambda\| + \|\mu\|$.
2. If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a^\nu_{\lambda\mu}(n) = a^\nu_{\lambda\mu}$ is independent of n.

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

[Méliot’14] $a^\nu_{\lambda\mu}(n)$ is polynomial in q^n. (His formulation does not use the modified type or filtration length.)
Stability of symmetric groups

Stability for $GL_n(q)$

Conjectures and questions

Stability for $GL_n(q)$

Stable structure constants

• $K_\lambda(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $||\lambda|| + \ell(\lambda(t - 1)) \leq n$); otherwise $= 0$.

• The multiplication in the center is

$$K_\lambda(n)K_\mu(n) = \sum_\nu a^\kappa_{\lambda\mu}(n)K_\nu(n), \text{ for } a^\kappa_{\lambda\mu}(n) \in \mathbb{N}.\$$

Theorem 1 (W-Wang’18)

(1) $a^\kappa_{\lambda\mu}(n) = 0$ unless $||\nu|| \leq ||\lambda|| + ||\mu||$

(2) If $||\nu|| = ||\lambda|| + ||\mu||$, then $a^\kappa_{\lambda\mu}(n) = a^\kappa_{\lambda\mu}$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $||\nu|| = ||\lambda|| + ||\mu||$.

Remark

[Méliot’14] $a^\kappa_{\lambda\mu}(n)$ is polynomial in q^n. (His formulation does not use the modified type or filtration length.)
A stable ring

Theorem 2 ([W-Wang], a reformulation)

1. $\mathbb{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell\ell(K_\lambda(n)) = \|\lambda\|$.
2. The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:
 \[K_\lambda(n)K_\mu(n) = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a^\nu_{\lambda\mu} K_\nu(n). \]
3. There exists a stable center $G(q) := "\mathbb{Z}^{gr}(\mathbb{Z}GL_\infty(q))"$ with basis $\{K_\lambda \mid \lambda \in \text{Par}(\Phi)\}$ and $K_\lambda K_\mu = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a^\nu_{\lambda\mu} K_\nu$.
4. There exists an epi $G(q) \longrightarrow \mathbb{Z}^{gr}(\mathbb{Z}GL_n(q))$, $K_\lambda \mapsto K_\lambda(n)$.
Stability for $GL_n(q)$

Conjectures and questions

A stable ring

Theorem 2 ([W-Wang], a reformulation)

1. $\mathbb{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell(K_\lambda(n)) = \|\lambda\|$.

2. The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:

$$K_\lambda(n)K_\mu(n) = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a^{\nu}_{\lambda\mu} K_\nu(n).$$

3. There is a stable center $\mathfrak{g}(q) := \langle \mathbb{Z}^{gr}(\mathbb{Z}GL_\infty(q)) \rangle$ with basis $\{K_\lambda \mid \lambda \in \text{Par}(\Phi)\}$ and $K_\lambda K_\mu = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a^{\nu}_{\lambda\mu} K_\nu$.

4. There exists an epi $\mathfrak{g}(q) \twoheadrightarrow \mathbb{Z}^{gr}(\mathbb{Z}GL_n(q))$, $K_\lambda \mapsto K_\lambda(n)$.
Theorem 2 ([W-Wang], a reformulation)

1. \(\mathcal{Z}(\mathbb{Z}\text{GL}_n(q)) \) is a filtered ring with \(\ell(\lambda)(n) = \|\lambda\| \).
2. The associated graded \(\mathcal{Z}^{gr}(\mathbb{Z}\text{GL}_n(q)) \) has structure constants independent of \(n \):
 \[
 K_\lambda(n)K_\mu(n) = \sum_{\|\nu\| = \|\lambda\|+\|\mu\|} a^\nu_{\lambda\mu} K_\nu(n).
 \]
3. \(\exists \) a stable center \(\mathcal{G}(q) := \text{“}\mathcal{Z}^{gr}(\mathbb{Z}\text{GL}_\infty(q))\text{“} \) with basis \(\{K_\lambda \mid \lambda \in \text{Par}(\Phi)\} \) and \(K_\lambda K_\mu = \sum_{\|\nu\| = \|\lambda\|+\|\mu\|} a^\nu_{\lambda\mu} K_\nu \).
4. \(\exists \) an epi \(\mathcal{G}(q) \rightarrow \mathcal{Z}^{gr}(\mathbb{Z}\text{GL}_n(q)), K_\lambda \mapsto K_\lambda(n) \).
A stable ring

Theorem 2 ([W-Wang], a reformulation)

1. $\mathcal{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell(\lambda) = \| \lambda \|$.
2. The associated graded $\mathcal{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:

 $$K_{\lambda}(n)K_{\mu}(n) = \sum_{\| \nu \| = \| \lambda \| + \| \mu \|} a_{\lambda\mu}^{\nu}K_{\nu}(n).$$

3. There exists a stable center $\mathcal{G}(q) := \mathcal{Z}^{gr}(\mathbb{Z}GL_{\infty}(q))$ with basis $\{ K_{\lambda} \mid \lambda \in \text{Par}(\Phi) \}$ and $K_{\lambda}K_{\mu} = \sum_{\| \nu \| = \| \lambda \| + \| \mu \|} a_{\lambda\mu}^{\nu}K_{\nu}$.
4. There exists an epi $\mathcal{G}(q) \rightarrow \mathcal{Z}^{gr}(\mathbb{Z}GL_n(q))$, $K_{\lambda} \mapsto K_{\lambda}(n)$.

$\mathcal{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell(\lambda) = \| \lambda \|$.

The associated graded $\mathcal{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:

$$K_{\lambda}(n)K_{\mu}(n) = \sum_{\| \nu \| = \| \lambda \| + \| \mu \|} a_{\lambda\mu}^{\nu}K_{\nu}(n).$$

There exists a stable center $\mathcal{G}(q) := \mathcal{Z}^{gr}(\mathbb{Z}GL_{\infty}(q))$ with basis $\{ K_{\lambda} \mid \lambda \in \text{Par}(\Phi) \}$ and $K_{\lambda}K_{\mu} = \sum_{\| \nu \| = \| \lambda \| + \| \mu \|} a_{\lambda\mu}^{\nu}K_{\nu}$.

There exists an epi $\mathcal{G}(q) \rightarrow \mathcal{Z}^{gr}(\mathbb{Z}GL_n(q))$, $K_{\lambda} \mapsto K_{\lambda}(n)$.

∃ a stable center $\mathcal{G}(q) := \mathcal{Z}^{gr}(\mathbb{Z}GL_{\infty}(q))$ with basis $\{ K_{\lambda} \mid \lambda \in \text{Par}(\Phi) \}$ and $K_{\lambda}K_{\mu} = \sum_{\| \nu \| = \| \lambda \| + \| \mu \|} a_{\lambda\mu}^{\nu}K_{\nu}$.

∃ an epi $\mathcal{G}(q) \rightarrow \mathcal{Z}^{gr}(\mathbb{Z}GL_n(q))$, $K_{\lambda} \mapsto K_{\lambda}(n)$.

$\mathcal{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell(\lambda) = \| \lambda \|$.

The associated graded $\mathcal{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:

$$K_{\lambda}(n)K_{\mu}(n) = \sum_{\| \nu \| = \| \lambda \| + \| \mu \|} a_{\lambda\mu}^{\nu}K_{\nu}(n).$$

There exists a stable center $\mathcal{G}(q) := \mathcal{Z}^{gr}(\mathbb{Z}GL_{\infty}(q))$ with basis $\{ K_{\lambda} \mid \lambda \in \text{Par}(\Phi) \}$ and $K_{\lambda}K_{\mu} = \sum_{\| \nu \| = \| \lambda \| + \| \mu \|} a_{\lambda\mu}^{\nu}K_{\nu}$.

There exists an epi $\mathcal{G}(q) \rightarrow \mathcal{Z}^{gr}(\mathbb{Z}GL_n(q))$, $K_{\lambda} \mapsto K_{\lambda}(n)$.
Stability of symmetric groups

Stability for $GL_n(q)$

Conjectures and questions

Stability for $GL_n(q)$

Examples of stable structure constants $a^\nu_{\lambda\mu}$

Example

1. Computed $a^\nu_{\lambda\mu}$ completely when $\|\lambda\| = \|\mu\| = 1$, e.g.,

$$
a^{(2)}_{t-\xi'}_{(1)_{t-\xi}(1)_{t-\eta}} = q \quad \text{if } \xi' \not\in \{\xi, \eta\};
$$

$$
a^{(1,1)}_{(1)_{t-\xi}(1)_{t-\xi}} = q^2 + q
$$

2. $q = 3, \quad x = y = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad h = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}

\Rightarrow \quad [x] [y] = 3 [h] + ...

Let $x' = \text{diag} (x, 1), \quad y' = \text{diag} (y, 1), \quad h = \text{diag} (h, 1)

\Rightarrow \quad [[x']] [[y']] = 3 [[h']] + ...
Examples of stable structure constants $a_{\lambda \mu}^\nu$

Example

1. Computed $a_{\lambda \mu}^\nu$ completely when $\|\lambda\| = \|\mu\| = 1$, e.g.,

$$
a_{(2)t-\xi'}^{(1)t-\xi(1)t-\eta} = q \text{ if } \xi' \not\in \{\xi, \eta\};
$$

$$
a_{(1,1)t-\xi}^{(1)t-\xi(1)t-\xi} = q^2 + q
$$

2. $q = 3$, $x = y = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $h = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$
\Rightarrow \quad [[x]] [[y]] = 3[[h]] + \ldots
$$

Let $x' = \text{diag}(x, 1)$, $y' = \text{diag}(y, 1)$, $h = \text{diag}(h, 1)$

$$
\Rightarrow \quad [[x']] [[y']] = 3[[h']] + \ldots
$$
Example, II

Example

Let $\lambda = (1)_{t-\xi_1}$, $\mu = (1)_{t-\xi_2} \cup \cdots \cup (1)_{t-\xi_d}$ with distinct ξ_i. Then

$$a_{\lambda \mu}^{\lambda \cup \mu} = (2q - 1)^{d-1}.$$

- Recall 2 types of reflections: semisimple or unipotent. The structure constants in Examples above ignore such differences.
Example, II

Let $\lambda = (1)_{t-\xi_1}, \mu = (1)_{t-\xi_2} \cup \cdots \cup (1)_{t-\xi_d}$ with distinct ξ_i. Then

$$a_{\lambda \mu}^\lambda = (2q - 1)^{d-1}.$$

- Recall 2 types of reflections: semisimple or unipotent. The structure constants in Examples above ignore such differences.
Conjectures and questions

Conjecture I: a polynomial ring

Computations have suggested general patterns. We shall present several conjectures and open problems.

Conjecture I

The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{G}(q)$ is a polynomial algebra generated by the single cycle class sums $K_{(r)f}$, for all $r \geq 1$ and $f \in \Phi$.

(Analogous statements hold for S_n and wreath products.)
Conjectures and questions

Conjecture I: a polynomial ring

Computations have suggested general patterns. We shall present several conjectures and open problems.

Conjecture I

The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{G}(q)$ is a polynomial algebra generated by the single cycle class sums $K_{(r), f}$, for all $r \geq 1$ and $f \in \Phi$.

(Analogous statements hold for S_n and wreath products.)
Conjectures and questions

Conjecture I: a polynomial ring

Computations have suggested general patterns. We shall present several conjectures and open problems.

Conjecture I

The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} G(q)$ *is a polynomial algebra generated by the single cycle class sums* $K_{(r)_f}$, *for all* $r \geq 1$ *and* $f \in \Phi$.

(Analogous statements hold for S_n and wreath products.)
Conjectures and questions

Independent of supports

• $\forall \lambda \in \text{Par}(\Phi)$, define its support $\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \}$

• Let $\{\lambda, \mu, \nu\}, \{\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}\}$ with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Assume \exists a degree-preserving bijection

$\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \leftrightarrow \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}$, s.t.

$\lambda(f) = \tilde{\lambda}(\tilde{f}), \mu(f) = \tilde{\mu}(\tilde{f}), \nu(f) = \tilde{\nu}(\tilde{f}), \forall f$.

(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants $a^\nu_{\lambda\mu}$ only depend on the configurations of $\{\lambda, \mu, \nu\}$, i.e., $a^\nu_{\lambda\mu} = a^{\tilde{\nu}}_{\tilde{\lambda}\tilde{\mu}}$.

In particular, the structure constants are insensitive to semisimple/unipotent support. (Supported by all/limited examples.)
Independent of supports

- \(\forall \lambda \in \text{Par}(\Phi) \), define its support \(\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \} \)
- Let \(\{ \lambda, \mu, \nu \} \), \(\{ \tilde{\lambda}, \tilde{\mu}, \tilde{\nu} \} \) with \(\| \nu \| = \| \lambda \| + \| \mu \| \).

Assume \(\exists \) a degree-preserving bijection
\[
\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \xrightarrow{1:1} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), \quad f \mapsto \tilde{f}, \text{ s.t.}
\[
\lambda(f) = \tilde{\lambda}(\tilde{f}), \quad \mu(f) = \tilde{\mu}(\tilde{f}), \quad \nu(f) = \tilde{\nu}(\tilde{f}), \quad \forall f.
\]
(Say the two triples have same configuration)

Conjecture II (Independence of supports)
The structure constants \(a^\nu_{\lambda\mu} \) only depend on the configurations of \(\{ \lambda, \mu, \nu \} \), i.e., \(a^\nu_{\lambda\mu} = a^{\tilde{\nu}}_{\tilde{\lambda}\tilde{\mu}} \).

In particular, the structure constants are insensitive to semisimple/unipotent support. (Supported by all/limited examples.)
Independent of supports

- ∀ λ ∈ Par(Φ), define its support \(\Phi(\lambda) = \{ f ∈ Φ \mid \lambda(f) \neq ∅ \} \)
- Let \{ λ, μ, ν \}, \{ \tilde{λ}, \tilde{μ}, \tilde{ν} \} with \(\| ν \| = \| λ \| + \| μ \| \).

Assume \(\exists \) a degree-preserving bijection
\[\Phi(\lambda) \cup \Phi(μ) \cup \Phi(ν) \stackrel{1:1}{\leftrightarrow} \Phi(\tilde{λ}) \cup \Phi(\tilde{μ}) \cup \Phi(\tilde{ν}), \quad f \mapsto \tilde{f}, \text{s.t.} \]
\[\lambda(f) = \tilde{λ}(\tilde{f}), \quad μ(f) = \tilde{μ}(\tilde{f}), \quad ν(f) = \tilde{ν}(\tilde{f}), \quad ∀ f. \]
(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants \(a^ν_{λμ} \) only depend on the configurations of \{ λ, μ, ν \}, i.e., \(a^ν_{λμ} = a^ν_{\tilde{λ}\tilde{μ}} \).

In particular, the structure constants are insensitive to semisimple/unipotent support. (Supported by all/limited examples.)
Conjectures and questions

Independent of supports

- \(\forall \lambda \in \text{Par}(\Phi) \), define its support \(\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \} \)

- Let \(\{ \lambda, \mu, \nu \} \), \(\{ \tilde{\lambda}, \tilde{\mu}, \tilde{\nu} \} \) with \(\| \nu \| = \| \lambda \| + \| \mu \| \).

Assume \(\exists \) a degree-preserving bijection
\[
\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \overset{1:1}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), \ f \mapsto \tilde{f}, \ \text{s.t.} \quad \lambda(f) = \tilde{\lambda}(\tilde{f}), \ \mu(f) = \tilde{\mu}(\tilde{f}), \ \nu(f) = \tilde{\nu}(\tilde{f}), \ \forall f.
\]
(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants \(a^\nu_{\lambda\mu} \) only depend on the configurations of \(\{ \lambda, \mu, \nu \} \), i.e., \(a^\nu_{\lambda\mu} = a^{\tilde{\nu}}_{\tilde{\lambda}\tilde{\mu}} \).

In particular, the structure constants are insensitive to semisimple/unipotent support. (Supported by all/limited examples.)
Conjectures and questions

Independent of supports

- \(\forall \lambda \in \text{Par}(\Phi) \), define its support \(\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \} \)
- Let \(\{ \lambda, \mu, \nu \} \), \(\{ \tilde{\lambda}, \tilde{\mu}, \tilde{\nu} \} \) with \(\| \nu \| = \| \lambda \| + \| \mu \| \).

Assume \(\exists \) a degree-preserving bijection
\[
\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \overset{1:1}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), \quad f \mapsto \tilde{f}, \text{ s.t. }
\lambda(f) = \tilde{\lambda}(\tilde{f}), \quad \mu(f) = \tilde{\mu}(\tilde{f}), \quad \nu(f) = \tilde{\nu}(\tilde{f}), \quad \forall f.
\]
(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants \(a_{\lambda\mu}^\nu \) only depend on the configurations of \(\{ \lambda, \mu, \nu \} \), i.e., \(a_{\lambda\mu}^\nu = a_{\tilde{\lambda}\tilde{\mu}}^{\tilde{\nu}} \).

In particular, the structure constants are insensitive to semisimple/unipotent support. (Supported by all/limited examples.)
Independent of supports

- For all \(\lambda \in \text{Par}(\Phi) \), define its support \(\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \} \)
- Let \(\{ \lambda, \mu, \nu \}, \{ \tilde{\lambda}, \tilde{\mu}, \tilde{\nu} \} \) with \(||\nu|| = ||\lambda|| + ||\mu|| \).

Assume \(\exists \) a degree-preserving bijection
\[
\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \xrightarrow{1:1} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}, \text{s.t.}
\]
\[
\lambda(f) = \tilde{\lambda}(\tilde{f}), \mu(f) = \tilde{\mu}(\tilde{f}), \nu(f) = \tilde{\nu}(\tilde{f}), \forall f.
\]
(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants \(a_{\lambda\mu}^{\nu} \) only depend on the configurations of \(\{ \lambda, \mu, \nu \} \), i.e., \(a_{\lambda\mu}^{\nu} = a_{\tilde{\lambda}\tilde{\mu}}^{\tilde{\nu}} \).

In particular, the structure constants are insensitive to semisimple/unipotent support. (Supported by all/limited examples.)
Conjectures and questions

Independent of supports

- \(\forall \lambda \in \text{Par}(\Phi), \) define its support \(\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \} \)
- Let \(\{ \lambda, \mu, \nu \}, \{ \tilde{\lambda}, \tilde{\mu}, \tilde{\nu} \} \) with \(\| \nu \| = \| \lambda \| + \| \mu \| . \)

Assume \(\exists \) a degree-preserving bijection
\[\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \overset{1:1}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), \quad f \mapsto \tilde{f}, \text{ s.t.} \]
\[\lambda(f) = \tilde{\lambda}(\tilde{f}), \mu(f) = \tilde{\mu}(\tilde{f}), \nu(f) = \tilde{\nu}(\tilde{f}), \forall f. \]
(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants \(a^{\nu}_{\lambda \mu} \) only depend on the configurations of \(\{ \lambda, \mu, \nu \} \), i.e., \(a^{\nu}_{\lambda \mu} = a^{\tilde{\nu}}_{\lambda \tilde{\mu}}. \)

In particular, the structure constants are insensitive to semisimple/unipotent support. (Supported by all/limited examples.)
Conjectures and questions

Generic/motivic structure constants

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_\mathbb{Z}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q.
 ($\forall f(t) \in \Phi_\mathbb{Z}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

Conjecture III (Generic/motivic structure constants)

1. Suppose $\lambda, \mu, \nu \in P(\Phi_\mathbb{Z})$. Then $\exists A_{\lambda\mu}^{\nu}(q) \in \mathbb{Z}[q]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(q)$, $\forall q$ with $\Phi_\mathbb{Z}(\lambda), \Phi_\mathbb{Z}(\mu), \Phi_\mathbb{Z}(\nu) \subset \Phi_q$.

2. (Positivity) Let $B_{\lambda\mu}^{\nu} \in \mathbb{Z}[q]$ be s.t. $B_{\lambda\mu}^{\nu}(q) = A_{\lambda\mu}^{\nu}(q + 1)$. Then $B_{\lambda\mu}^{\nu} \in \mathbb{N}[q]$.
Conjectures and questions

Generic/motivic structure constants

Question. How does \(a_{\lambda\mu}^\nu \) depend on \(q \)?

- Write \(\Phi_q = \Phi \) to indicate its dependence on \(q \).
- \(\Phi_Z \): set of monic irreducible polynomials in \(\mathbb{Z}[t] \) other than \(t \).
- Any polynomial in \(\mathbb{Z}[t] \) lies in \(\mathbb{F}_q[t] \) by reduction modulo \(q \).
 \((\forall f(t) \in \Phi_Z, f(t) \in \Phi_q \text{ for } q \text{ any power of a large enough prime.})\)**

Conjecture III (Generic/motivic structure constants)

1. Suppose \(\lambda, \mu, \nu \in \mathcal{P}(\Phi_Z) \). Then \(\exists A_{\lambda\mu}^\nu(q) \in \mathbb{Z}[q] \) such that \(a_{\lambda\mu}^\nu = A_{\lambda\mu}^\nu(q), \forall q \) with \(\Phi_Z(\lambda), \Phi_Z(\mu), \Phi_Z(\nu) \subset \Phi_q \).

2. (Positivity) Let \(B_{\lambda\mu}^\nu \in \mathbb{Z}[q] \) be s.t. \(B_{\lambda\mu}^\nu(q) = A_{\lambda\mu}^\nu(q + 1) \). Then \(B_{\lambda\mu}^\nu \in \mathbb{N}[q] \).
Conjectures and questions

Generic/motivic structure constants

Question. How does \(a_{\lambda \mu}^{\nu} \) depend on \(q \)?

- Write \(\Phi_q = \Phi \) to indicate its dependence on \(q \).
- \(\Phi_{\mathbb{Z}} \): set of monic irreducible polynomials in \(\mathbb{Z}[t] \) other than \(t \).
- Any polynomial in \(\mathbb{Z}[t] \) lies in \(\mathbb{F}_q[t] \) by reduction modulo \(q \).
 \((\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q \text{ for } q \text{ any power of a large enough prime.})\)

Conjecture III (Generic/motivic structure constants)

1. Suppose \(\lambda, \mu, \nu \in \mathcal{P}(\Phi_{\mathbb{Z}}) \). Then \(\exists A_{\lambda \mu}^{\nu}(q) \in \mathbb{Z}[q] \) such that \(a_{\lambda \mu}^{\nu} = A_{\lambda \mu}^{\nu}(q), \forall q \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_q. \)

2. (Positivity) Let \(B_{\lambda \mu}^{\nu} \in \mathbb{Z}[q] \) be s.t. \(B_{\lambda \mu}^{\nu}(q) = A_{\lambda \mu}^{\nu}(q + 1). \)
 Then \(B_{\lambda \mu}^{\nu} \in \mathbb{N}[q]. \)
Conjectures and questions

Generic/motivic structure constants

Question. How does $a_{\lambda \mu}^\nu$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_\mathbb{Z}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q.

(∀$f(t) \in \Phi_\mathbb{Z}$, $f(t) \in \Phi_q$ for q any power of a large enough prime.)

Conjecture III (Generic/motivic structure constants)

1. Suppose $\lambda, \mu, \nu \in \mathcal{P}(\Phi_\mathbb{Z})$. Then $\exists A_{\lambda \mu}^\nu(q) \in \mathbb{Z}[q]$ such that $a_{\lambda \mu}^\nu = A_{\lambda \mu}^\nu(q)$, ∀$q$ with $\Phi_\mathbb{Z}(\lambda), \Phi_\mathbb{Z}(\mu), \Phi_\mathbb{Z}(\nu) \subset \Phi_q$.

2. (Positivity) Let $B_{\lambda \mu}^\nu \in \mathbb{Z}[q]$ be s.t. $B_{\lambda \mu}^\nu(q) = A_{\lambda \mu}^\nu(q + 1)$. Then $B_{\lambda \mu}^\nu \in \mathbb{N}[q]$.
Question. How does $a_{\lambda\mu}^\nu$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_\mathbb{Z}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q.

(∀$f(t) \in \Phi_\mathbb{Z}$, $f(t) \in \Phi_q$ for q any power of a large enough prime.)

Conjecture III (Generic/motivic structure constants)

(1) Suppose $\lambda, \mu, \nu \in \mathcal{P}(\Phi_\mathbb{Z})$. Then $\exists A_{\lambda \mu}^\nu(q) \in \mathbb{Z}[q]$ such that

$\forall q$ with $\Phi_\mathbb{Z}(\lambda), \Phi_\mathbb{Z}(\mu), \Phi_\mathbb{Z}(\nu) \subset \Phi_q$.

(2) (Positivity) Let $B_{\lambda \mu}^\nu \in \mathbb{Z}[q]$ be s.t. $B_{\lambda \mu}^\nu(q) = A_{\lambda \mu}^\nu(q + 1)$. Then $B_{\lambda \mu}^\nu \in \mathbb{N}[q]$.
Conjectures and questions

Generic/motivic structure constants

Question. How does \(a_{\lambda \mu}^\nu \) depend on \(q \)?

- Write \(\Phi_q = \Phi \) to indicate its dependence on \(q \).
- \(\Phi \mathbb{Z} \): set of monic irreducible polynomials in \(\mathbb{Z}[t] \) other than \(t \).
- Any polynomial in \(\mathbb{Z}[t] \) lies in \(\mathbb{F}_q[t] \) by reduction modulo \(q \).
 (\(\forall f(t) \in \Phi \mathbb{Z}, f(t) \in \Phi_q \) for \(q \) any power of a large enough prime.)

Conjecture III (Generic/motivic structure constants)

1. Suppose \(\lambda, \mu, \nu \in \mathcal{P}(\Phi \mathbb{Z}) \). Then \(\exists A_{\lambda \mu}^\nu (q) \in \mathbb{Z}[q] \) such that
 \[a_{\lambda \mu}^\nu = A_{\lambda \mu}^\nu (q), \forall q \text{ with } \Phi \mathbb{Z}(\lambda), \Phi \mathbb{Z}(\mu), \Phi \mathbb{Z}(\nu) \subset \Phi_q. \]

2. (Positivity) Let \(B_{\lambda \mu}^\nu \in \mathbb{Z}[q] \) be s.t.
 \[B_{\lambda \mu}^\nu (q) = A_{\lambda \mu}^\nu (q + 1). \]
 Then \(B_{\lambda \mu}^\nu \in \mathbb{N}[q] \).
Conjectures and questions

Generic/motivic structure constants

Question. How does $a_{\lambda\mu}^\nu$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_\mathbb{Z}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. ($\forall f(t) \in \Phi_\mathbb{Z}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

Conjecture III (Generic/motivic structure constants)

1. Suppose $\lambda, \mu, \nu \in \mathcal{P}(\Phi_\mathbb{Z})$. Then $\exists A_{\lambda\mu}^\nu(q) \in \mathbb{Z}[q]$ such that $a_{\lambda\mu}^\nu = A_{\lambda\mu}^\nu(q), \forall q$ with $\Phi_\mathbb{Z}(\lambda), \Phi_\mathbb{Z}(\mu), \Phi_\mathbb{Z}(\nu) \subset \Phi_q$.

2. (Positivity) Let $B_{\lambda\mu}^\nu \in \mathbb{Z}[q]$ be s.t. $B_{\lambda\mu}^\nu (q) = A_{\lambda\mu}^\nu (q + 1)$.
 Then $B_{\lambda\mu}^\nu \in \mathbb{N}[q]$.
Conjectures and questions

Generic/motivic structure constants

Question. How does \(a^\nu_{\lambda\mu} \) depend on \(q \)?

- Write \(\Phi_q = \Phi \) to indicate its dependence on \(q \).
- \(\Phi_\mathbb{Z} \): set of monic irreducible polynomials in \(\mathbb{Z}[t] \) other than \(t \).
- Any polynomial in \(\mathbb{Z}[t] \) lies in \(\mathbb{F}_q[t] \) by reduction modulo \(q \).
 \((\forall f(t) \in \Phi_\mathbb{Z}, f(t) \in \Phi_q \text{ for } q \text{ any power of a large enough prime.}) \)

Conjecture III (Generic/motivic structure constants)

1. Suppose \(\lambda, \mu, \nu \in \mathcal{P}(\Phi_\mathbb{Z}) \). Then \(\exists A^\nu_{\lambda\mu}(q) \in \mathbb{Z}[q] \) such that \(a^\nu_{\lambda\mu} = A^\nu_{\lambda\mu}(q), \forall q \text{ with } \Phi_\mathbb{Z}(\lambda), \Phi_\mathbb{Z}(\mu), \Phi_\mathbb{Z}(\nu) \subset \Phi_q. \)

2. (Positivity) Let \(B^\nu_{\lambda\mu} \in \mathbb{Z}[q] \) be s.t. \(B^\nu_{\lambda\mu}(q) = A^\nu_{\lambda\mu}(q + 1). \) Then \(B^\nu_{\lambda\mu} \in \mathbb{N}[q]. \)
Conjectures and questions

Integrality (beyond stable centers)

- [Méliot’14] ∃ polynomials $\tilde{p}^{\nu}_{\lambda \mu}(x)$ with rational coefficients such that $a^{\nu}_{\lambda \mu}(n) = \tilde{p}^{\nu}_{\lambda \mu}(q^n)$

- (Equiv.) ∃ a polynomial $p^{\nu}_{\lambda \mu}(x)$ with rational coefficients such that $a^{\nu}_{\lambda \mu}(n) = p^{\nu}_{\lambda \mu}([n]_q)$. (Use $q^n = (q - 1)[n]_q + 1$)

Conjecture IV (Integrality)

We have $p^{\nu}_{\lambda \mu}(x) \in \mathbb{Z}[x], \ \forall \lambda, \mu, \nu$.

More positivity conjecture can be formulated after a shift $q \mapsto q + 1$.
Conjectures and questions

Integrality (beyond stable centers)

- [Méliot’14] ∃ polynomials $\tilde{p}_{\lambda\mu}^\nu(x)$ with rational coefficients such that $a_{\lambda\mu}^\nu(n) = \tilde{p}_{\lambda\mu}^\nu(q^n)$

- (Equiv.) ∃ a polynomial $p_{\lambda\mu}^\nu(x)$ with rational coefficients such that $a_{\lambda\mu}^\nu(n) = p_{\lambda\mu}^\nu([n]_q)$. (Use $q^n = (q - 1)[n]_q + 1$)

Conjecture IV (Integrality)

We have $p_{\lambda\mu}^\nu(x) \in \mathbb{Z}[x]$, ∀ λ, μ, ν.

More positivity conjecture can be formulated after a shift $q \mapsto q + 1$.
Conjectures and questions

Integrality (beyond stable centers)

- [Méliot’14] ∃ polynomials $\tilde{p}_{\lambda\mu}^{\nu}(x)$ with rational coefficients such that $a_{\lambda\mu}^{\nu}(n) = \tilde{p}_{\lambda\mu}^{\nu}(q^n)$

- (Equiv.) ∃ a polynomial $p_{\lambda\mu}^{\nu}(x)$ with rational coefficients such that $a_{\lambda\mu}^{\nu}(n) = p_{\lambda\mu}^{\nu}([n]_q)$. (Use $q^n = (q - 1)[n]_q + 1$)

Conjecture IV (Integrality)

We have $p_{\lambda\mu}^{\nu}(x) \in \mathbb{Z}[x]$, $\forall \lambda, \mu, \nu$.

More positivity conjecture can be formulated after a shift $q \mapsto q + 1$.
Conjectures and questions

Integrality (beyond stable centers)

- [Méliot’14] ∃ polynomials $\tilde{p}_{\lambda\mu}^\nu(x)$ with rational coefficients such that $a_{\lambda\mu}^\nu(n) = \tilde{p}_{\lambda\mu}^\nu(q^n)$

- (Equiv.) ∃ a polynomial $p_{\lambda\mu}^\nu(x)$ with rational coefficients such that $a_{\lambda\mu}^\nu(n) = p_{\lambda\mu}^\nu([n]_q)$. (Use $q^n = (q - 1)[n]_q + 1$)

Conjecture IV (Integrality)

We have $p_{\lambda\mu}^\nu(x) \in \mathbb{Z}[x]$, ∀ λ, μ, ν.

More positivity conjecture can be formulated after a shift $q \mapsto q + 1$.
Further directions

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,
- You are invited to establish some or all conjectures above!
Further directions

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,......
- You are invited to establish some or all conjectures above!
Conjectures and questions

Further directions

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,......
- You are invited to establish some or all conjectures above!
Further directions

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,......

- You are invited to establish some or all conjectures above!
Further directions

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,......
- You are invited to establish some or all conjectures above!
References

[W-Wang’18] *Stability of the centers of group algebras of* $GL_n(q)$, arxiv:1805.08796

Thank you!